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Abstract  The Seemingly Unrelated Regression Equation model is a generalization of a linear regression model 
that consists of several regression equations in order to achieve efficient estimates. Unfortunately, the assumptions 
underlying most SUR estimators give little/no consideration to outlying observations which may be present in the 
data. These atypical observations may have some apparent distorting effects on the estimates produced by these 
estimators. This study thus examined the effect of outliers on the performances of SUR and OLS estimators using 
Monte Carlo simulation method. The Cholesky method was used to partition the variance-covariance matrix ∑  by 
decomposing it into the upper and lower non-singular triangular matrices. Varying degree of outliers; 0%, 5%, and 
10% were each introduced into five sample sizes; 20, 40, 60, 100 and 500 respectively. The performances of the 
estimators were evaluated using Absolute Bias (ABIAS) and Mean Square Error (MSE). The results showed that at 
0% outliers (when outliers were absent), the ABIAS and MSE of the SUR and OLS estimators showed similar 
results. At 5% and 10% outliers, the magnitude in ABIAS and MSE for both estimators increased but the SUR 
estimator showed better performance than the OLS estimator. As the sample size increases, ABIAS and MSE of the 
estimators decreased consistently for the various degrees of outliers considered with SUR consistently better than 
OLS. 
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1. Introduction 

“Seemingly unrelated regression equations” is an 
expression first used by Zellner [1]. It indicates a set of 
equations for modelling the dependence of m variables  
(m ≥ 1) on one or more regressors in which the error terms 
in the different equations are allowed to be correlated and, 
thus, the equations should be jointly considered [2]. Thus, 
SUR models are often applied when there may be several 
equations, which appear to be unrelated; however, they 
may be related by the fact that: (1) some coefficients are 
the same or assumed to be zero; (2) the disturbances are 
correlated across equations; and/or (3) a subset of right 
hand side variables are the same. 

Since their introduction, SUR models have taken an 
important place in econometrics and in statistics. See  
for example [3]. Srivastava & Giles [4] give a detailed 
treatment of estimation and inference in SUR models. 
However, since the procedure proposed originally by 
Zellner [1] is essentially a least squares estimator in a 
multiple equations model with a particular covariance 
matrix, it is expected that the estimator is vulnerable to 
outliers. 

Seemingly unrelated regression models have been 
studied through many approaches. In Zellner [1,5] feasible 
generalized least squares estimators are introduced and 

their properties are analysed. The maximum likelihood 
estimator from a Gaussian distribution for the error terms 
is investigated, for example, in Kmenta and Gilbert [6]; 
Oberhofer and Kmenta [7]; Magnus [8]; Park [9]. Further 
developments have been obtained by using bootstrap 
methods [10,11]. 

The Seemingly Unrelated Regression (SUR) estimator 
deals with a system of multivariate equations when error 
variables are contemporaneously correlated. There are  
two main motivations for use of SUR. The first one is to 
gain efficiency in estimation by combining information  
on different equations. The second motivation is to  
impose and/or test restrictions that involve parameters in 
different equations. Zellner [1] provided the seminal work 
in this area, and a thorough treatment is available in the 
book by Srivastava and Giles [4]. When contemporaneous 
correlations between the disturbances are high and the 
explanatory variables in different equations considered  
are uncorrelated then efficiency would be attained 
[1,12,13,14,15]. 

The OLS solutions of the seemingly unrelated 
regression model ignores any correlation among the errors 
across equations; however, because the dependent 
variables are correlated and the design matrices may 
contain some of the same variables, there may be 
contemporaneous correlation among the errors across  
the equations. The Seemingly Unrelated Regression  
(SUR) estimator is efficient as it takes into account the 
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covariance structure of the errors [16,17]. 
Zeller [1] showed that univariate analysis may result in 

inefficient estimates of the covariate effects. SUR is a 
special case of the multivariate regression model that is 
used to capture the effect of different covariates allowed 
in the regression equations. It is a joint modeling where 
systems of equations are considered being related through 
error. Zeller concluded that SUR models allow for 
simultaneous estimation of multiple models with different 
covariables while accounting for the correlated errors.  

Binkley [16] examined the effect of variable correlation 
on an individual coefficient estimated by SUR in a two-
equation model. It was seen that the effect of correlation 
among variables across the equations greatly depends on 
the multicollinearity already existing within an equation. 
It was noted that the major factor determining the 
efficiency gain of SUR for the coefficient on an individual 
variable is not the correlation between that variable and 
those in the other equation. Rather, it is the correlation 
between the latter and the residuals obtained by regressing 
the variable in question on the remaining variable in its 
own equation. 

An outlier is defined as an observation that appears to 
be inconsistent with other observations in a data set. They 
can occur by chance in a distribution but are mostly 
indicative of measurement error which one can decide  
to discard or use statistics that are robust. They can also 
come from incorrect specifications that are based on  
the wrong distributional assumptions at the time the 
specifications are generated. They provide useful 
information about a process [18]. In practice, data 
collected in a broad range of applications frequently 
contain one or more atypical observations called outlier.  
A single outlier can have a large distorting influence  
on a classical statistical method that is optimal under  
the assumption of normality or linearity. Many estimation 
procedures proposed by researchers to handle SUR 
equation models are based on the assumptions that give 
little consideration to atypical data, however, these 
atypical observations may have some apparent distorting 
effects on the estimates produced by these estimators, thus 
the need to investigate the distorting effects of outliers in 
seemingly unrelated regression equations estimation 
methods. 

The presence of outlier in a data set can lead to inflated 
error rates and substantial distortions of parameter and 
statistic estimates when using parametric or nonparametric 
test [19]. The effects of outliers will pervade through all 
the equations and the estimated parameters in them. These 
effects are so intricately pervasive that it is very difficult 
to assess the influence of outliers on the estimated 
parameters [20]. [21] confirmed empirically that 
researchers rarely report checking for outliers of any sort, 
by reporting that authors reported testing assumptions of 
the statistical procedure(s) used in their studies, including 
checking for the presence of outliers, only 8% of the time 
[22]. 

The assumptions underlying most SUR estimators  
give little consideration to influential observations  
which may be present in the data; however, these atypical 
observations may have some obvious distorting effects on 
the estimates produced by these estimators [23]. Moreover, 
the effects of outliers may permeate through the system of 

equations, the primary aim of SUR which is to achieve 
efficiency in estimation is therefore questionable. The aim 
of this study is therefore to investigate the effect of 
outliers on the performances of equation-by-equation 
application of least squares (OLS) and SUR estimator 
(FGLS) and to examine the asymptotic properties of the 
estimators in the presence of outliers.  

The rest of the paper is organised as follows: Section 2 
illustrates the theory behind the methodology followed  
by the design of the simulation experiment in section 3. 
Analysis and Discussion of results as presented in  
sections 4 and 5. In Section 6 some concluding remarks 
are provided.  
 

2. Materials and Methods 

The system of m seemingly unrelated regression 
equations can be stacked in two equivalent compact 
matrix forms. It can be expressed as a multiple linear 
regression model: 

 β ε= +y X  (1) 

Where ' ' '
1( , , )my y y= …  is the nm 1×  response vector, 
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X is the nm p×  structured design matrix, with 
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m
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= ∑ , ' ' '
1( , , )mβ β β= …  is the mp 1×  parameter 

vector. It is namely assumed that the error vectors are 
contemporaneously but not serially correlated herein. This 
means that for given observations i  and l , across the 
regression equations j  and k , holds that 
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The above equation (1) can also be estimated separately 
using the OLS estimator but this would ignore the 
covariance structure of the errors. A more efficient 
estimator is obtained as the GLS estimator with weight 
matrix 

W Cov(ε)=  and we have, 

 
( )' 1 1 ' 1

1 1' 1 '

ˆ ( )

( ) ( )n n

x w x x w y

x l x x l y

β − − −

− −−

=

= ⊗ ⊗∑ ∑
 (6) 

From above, ∑  is unknown, therefore a Feasible GLS 
(FGLS) estimator also called the SUR estimator is 
preferred that replaces the unknown W with a consistent 
estimate. The FGLS estimator is an iterative two-step 
procedure that uses estimates for β  to estimate ∑ , which 

is then used to improve the regression estimates β̂ . 

Each equation is estimated by OLS, giving ˆ
jβ . 

The residuals j
ˆˆ Xˆj j jyε β= −  from the m equations are 

used to estimate the error covariance matrix  

       𝑤𝑤� = ∑� ⊗ 𝒍𝒍𝒏𝒏 with 

 ∑� =  𝟏𝟏/𝒏𝒏(𝜺𝜺�𝟏𝟏, … , 𝜺𝜺�𝒎𝒎)′(𝜺𝜺�𝟏𝟏, … , 𝜺𝜺�𝒎𝒎) (7) 
New estimates of β  are obtained, known as the 

feasible generalized least squares (FGLS) as 

 𝛽̂𝛽 = (𝑋𝑋′𝑤𝑤�−1𝑋𝑋)−1 (𝑋𝑋′𝑤𝑤�−1𝑦𝑦) 
                             = (𝑋𝑋′∑�−1⨂𝑙𝑙𝑛𝑛𝑋𝑋)−1(𝑋𝑋′∑�−1⨂𝑙𝑙𝑛𝑛𝑦𝑦) (8) 

The estimated covariance matrix of β̂  is given by, 

 2 ' 1 1ˆ ˆcov( ) ( )X w Xβ σ − −=  (9) 

3. Design of the Simulation Experiment 

A three-equation of seemingly unrelated regression 
model with correlated errors is given as; 

 
1 11 12 1

2 21 22 2

3 31 32 3

1.0 1.5 3.0
0.9 1.8 2.6
0.6 0.9 1.7

Y X X e
Y X X e
Y X X e

= + + +
= + + +
= + + +

 (10) 

Where n = 1, 2, … , N (number of observations) 
In each equation, the explanatory variables were 

contaminated with various degrees of outliers leading to 
the contamination of the whole equation. Contamination 
was done at 0%, 5% and 10% respectively. The Monte 
Carlo Simulation was used to simulate the explanatory 
variables 11 12 21 22 31 32( , , , , , )X X X X X X  from a normal 
distribution for various sample sizes N=20, 40, 60, 100, 
and 500. 

The following data were generated following the steps 
below; 

The vectors of the X’s independent regressors were 
generated by drawing 11 12 21 22 31 32, , , , ,X X X X X X  from 
a normal distribution and contaminated at varying degrees 
of outliers (0%, 5% and 10%). 

The '
1 2 3, ),(ε ε ε ε= , are series of random normal 

deviates which were standardized and appropriately 
transformed to ensure that the disturbance terms are 
contemporaneously correlated and have specific variance-
covariance matrices ∑�  estimated in the model 

From definition, ∑�  is a definite matrix, therefore there 
exists a non- singular triangular matrix P such that  

 ∑=′ ˆPP  

The estimated variance-covariance matrix ∑�  was 
obtained and later decomposed into upper and lower non-
singular triangular matrices 'P P  such that  

 ∑=′ ˆPP  
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Solving for the unknowns in equation (11), we have; 
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Thus, the Cholesky (variance-covariance) decomposition 
for N=20 is computed as; 

 
0.9374 0 0
0.0741 1.1565 0
0.4380 0.0595 0.8107

K
 
 =  
 − 

 (13) 

To establish a strong comtemporaneous relationship 
between the three sets of equations when N=20) through 
their error terms, we have, 

* * * * '
1 2 3( )ε ε ε ε=  in place of '

1 2 3( )ε ε ε ε=  whose 
elements are determined by the product 
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Since certain values have been assigned to the structural 
parameters, we pre-determined the coefficients as in 
Monte Carlo experiment. The experiment was carried out 
for each of the sample sizes. Codes were written using the 
R- software following the above procedures.  

The known parameters were then estimated as 
unknowns using SUR and OLS estimation methods. The 
performances of both estimators were compared. 
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4. Analysis of Simulated Results 
The summary of the results of the simulation described 

above when the SUR model is contaminated with varying 
degrees of outliers, 0%, 5% and 10% at various sample 
sizes N=20, 40, 60, 100, and 500 are presented in the 
Tables below. At mentioned earlier, the performances of 
OLS and SUR estimators were adjudged using ABIAS 
and MSE. 

From Table 1, the OLS estimator showed consistent 
asymptotic behaviour with the values of MSE decreasing 
consistently as the sample size increases from N = 20  
to 500 for all the equations at the various percentage  
of contamination. The values of ABIAS on the other  
hand, also decrease consistently for the levels of 
contamination considered as the sample size increases 
except for Equation 1 at 0% contamination at N = 20 and 
N = 40 respectively. However, for Equation 2 the same 
values are obtained for ABIAS at N = 20 and N = 40 for 
all percentage of contamination. It is worth noting that 

both ABIAS and MSE estimates decrease as the 
percentage contamination increases for all the sample 
sizes. 

From Table 2, the ABIAS estimates obtained at N = 20 
for Equation 1 is the same for 0% and 5% contamination 
levels. For Equation 2, the ABIAS estimates at N = 20 and 
N = 40 are exactly the same for 0% and 5% levels of 
contamination. The SUR estimator exhibits an asymptotic 
behaviour with the values of both ABIAS and MSE 
consistently decreasing at all the levels of contamination 
under consideration as the sample size increases. The SUR 
estimator is not greatly affected by the presence of outliers 
at the large sample sizes (i.e. N = 100 and 500) even as the 
percentage contamination is increased. The values of 
ABIAS and MSE increase as the contamination level 
increases for all the sample sizes and Equations but at 
small magnitudes for large sample sizes. 

Table 1 and Table 2 are combined to produce Table 3 to 
facilitate comparison across estimators, sample sizes and 
percentage outliers. 

Table 1. Performance of the OLS estimator across different sample sizes 

 CONTAMINATION 
LEVEL 

Sample Size 

N=20 N=40 N=60 N=100 N=500 

EQUATION 1  ABIAS MSE ABIAS MSE ABIAS MSE ABIAS MSE ABIAS MSE 

 0% 0.3089 0.1464 0.4928 0.1009 0.0691 0.0272 0.0711 0.0151 0.0382 0.0032 

 5% 0.5827 0.2320 0.4665 0.1581 0.0694 0.0281 0.0794 0.0242 0.0398 0.0037 

 10% 0.7168 0.3760 0.4805 0.2285 0.4253 0.1563 0.1534 0.0480 0.0633 0.0077 

EQUATION 2            

 0% 0.3613 0.1838 0.3613 0.1645 0.0691 0.0300 0.0322 0.0138 0.0299 0.0026 

 5% 0.5811 0.2683 0.5811 0.3204 0.0791 0.0305 0.0782 0.0177 0.0518 0.0037 

 10% 0.6653 0.3760 0.6653 0.4001 0.2905 0.1007 0.0438 0.0380 0.0808 0.0087 

EQUATION 3            

 0% 0.4145 0.2038 0.3918 0.1518 0.1155 0.0300 0.0185 0.0135 0.0316 0.0029 

 5% 0.4450 0.2736 0.4408 0.1909 0.1269 0.0412 0.0526 0.0153 0.0329 0.0033 

 10% 0.5388 0.2862 0.4465 0.2061 0.2944 0.1021 0.1719 0.0511 0.0918 0.0096 

Table 2. Performance of the SUR estimator across different sample sizes with varying degrees of outliers 

 CONTAMINATION 
LEVEL 

Sample Size 

N=20 N=40 N=60 N=100 N=500 

EQUATION 1  ABIAS MSE ABIAS MSE ABIAS MSE ABIAS MSE ABIAS MSE 

 0% 0.3530 0.1712 0.3277 0.1345 0.0740 0.0271 0.0145 0.0114 0.0128 0.0019 

 5% 0.3530 0.1720 0.3177 0.1353 0.0834 0.0288 0.0178 0.0116 0.0130 0.0022 

 10% 0.3920 0.1790 0.3210 0.1378 0.0909 0.0308 0.0179 0.0120 0.0130 0.0024 

EQUATION 2            

 0% 0.3535 0.1722 0.3535 0.1352 0.0764 0.0289 0.0128 0.0115 0.0128 0.0021 

 5% 0.3567 0.1740 0.3567 0.1362 0.0765 0.0291 0.0130 0.0119 0.0130 0.0022 

 10% 0.3815 0.1766 0.3815 0.1380 0.0772 0.0301 0.0132 0.0120 0.0131 0.0023 

EQUATION 3            

 0% 0.3539 0.1720 0.3195 0.1350 0.0768 0.0276 0.0128 0.0118 0.0127 0.0020 

 5% 0.3620 0.1760 0.3222 0.1374 0.0787 0.2901 0.0130 0.0117 0.0130 0.0022 

 10% 0.4101 0.1890 0.3371 0.1387 0.0799 0.0300 0.0147 0.0120 0.0133 0.0023 
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Table 3. Simulated information criteria for different estimation techniques 

Methods Sample 
Size Measures 

EQUATION 1 EQUATION 2 EQUATION 3 

Percentage of Outliers 

0% 5% 10% 0% 5% 10% 0% 5% 10% 

OLS 

N=20 
ABIAS 0.3089 0.5827 0.7168 0.3613 0.5811 0.6653 0.4145 0.4450 0.5388 

MSE 0.1464 0.2320 0.3760 0.1838 0.2683 0.3760 0.2038 0.2736 0.2862 

N=40 
ABIAS 0.4928 0.4665 0.4805 0.3613 0.5811 0.6653 0.3918 0.4408 0.4465 

MSE 0.1009 0.1581 0.2285 0.1645 0.3204 0.4001 0.1518 0.1909 0.2061 

N=60 
ABIAS 0.0691 0.0694 0.4253 0.0691 0.0791 0.2905 0.1155 0.1269 0.2944 

MSE 0.0272 0.0281 0.1563 0.0300 0.0305 0.1007 0.0300 0.0412 0.1021 

N=100 
ABIAS 0.0711 0.0794 0.1534 0.0322 0.0782 0.0438 0.0185 0.0526 0.1719 

MSE 0.0151 0.0242 0.0480 0.0138 0.0177 0.0380 0.0135 0.0153 0.0511 

N=500 
ABIAS 0.0382 0.0398 0.0633 0.0299 0.0518 0.0808 0.0316 0.0329 0.0918 

MSE 0.0032 0.0037 0.0077 0.0026 0.0037 0.0087 0.0029 0.0033 0.0096 

SUR 

N=20 
ABIAS 0.3530 0.3530 0.3920 0.3535 0.3567 0.3815 0.3539 0.3620 0.4101 

MSE 0.1712 0.1720 0.1790 0.1722 0.1740 0.1766 0.1720 0.1760 0.1890 

N=40 
ABIAS 0.3277 0.3177 0.3210 0.3535 0.3567 0.3815 0.3195 0.3222 0.3371 

MSE 0.1345 0.1353 0.1378 0.1352 0.1362 0.1380 0.1350 0.1374 0.1387 

N=60 
ABIAS 0.0740 0.0834 0.0909 0.0764 0.0765 0.0772 0.0768 0.0787 0.0799 

MSE 0.0271 0.0288 0.0308 0.0289 0.0291 0.0301 0.0276 0.2901 0.0300 

N=100 
ABIAS 0.0145 0.0178 0.0179 0.0128 0.0130 0.0132 0.0128 0.0130 0.0147 

MSE 0.0114 0.0116 0.0120 0.0115 0.0119 0.0120 0.0118 0.0117 0.0120 

N=500 
ABIAS 0.0128 0.0130 0.0130 0.0128 0.0130 0.0131 0.0127 0.0130 0.0133 

MSE 0.0019 0.0022 0.0024 0.0021 0.0022 0.0023 0.0020 0.0022 0.0023 

 
As the percentage of outlier increases, the ABIAS and 

MSE of both estimators increase drastically for all the 
sample sizes. The effect of the presence of outliers is not 
pronounced at large sample sizes, specifically at N = 100 
and 500, as values of both ABIAS and MSE in most cases 
decrease as sample size increases for OLS while the 
values of ABIAS and MSE consistently decrease for SUR 
revealing asymptotic property of the SUR estimator. The 
results also point out that the ABIAS and MSE of the OLS 
estimates are larger than the SUR especially at N = 60, 
100 and 500. 

5. Discussion of Results 

From the Tables, in the absence of outliers, the mean 
square error and the absolute bias of the SUR and OLS 
estimators showed similar performances in all the models. 
In the presence of 5% outliers, there was an increase in  
the mean square error and the absolute bias of the 
estimators while at 10% there was a further increase in the 
absolute bias and the mean square error of the estimators 
considered but the SUR estimator showed better 
performance than the OLS estimator in all the equations. 

It is also observed that the mean square error of the 
SUR and the OLS estimators consistently increased in the 
presence of outliers while they maintained a normal 
balance in the absence of outliers. However, the larger the 

sample size, the lower the effect of the outliers on the 
estimators. The SUR estimator however performed 
consistently better than the OLS estimator. 

6. Conclusion 

The main focus of this paper is to determine a better 
method of estimating the parameters of seemingly 
unrelated regression in the presence of outliers. The 
empirical study reveals that the OLS estimates are easily 
affected by the outliers especially at small sample sizes 
hence it is not reliable. On the other hand, the SUR 
estimates emerge to be conspicuously more efficient and 
more reliable as it is less affected by the outliers.  

This study found out that the mean square error and the 
absolute bias estimates of the SUR estimator (FGLS) were 
generally smaller than the mean square error and absolute 
bias of the OLS estimator in the presence of varying 
degrees of outliers, however in the absence of outliers, the 
estimators showed similar performances.  
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