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A bstract: This paper is concerned with uniform ultimate boundedness of
solutions of a third-order nonlinear differential equation (1.1). Sufficient con­
ditions under which all solutions x(t), its first and second derivatives tend to 
zero as t —+ oo, when p (t,x ,x ',x ")  =  0, are presented.
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1. Introduction

We shall be concerned here, with stability of the zero and ultimate boundedness 
of solutions of a third-order nonlinear differential equation

x\ x")x "  +  4>(t)g(x, x1) +  ifi(t)h{x, x\ x") =  p(t, x, x\ x"), (1.1) 

or its equivalent system * §
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s ' =  y ,y ' =

p(t,x,2/ ,2) W t)f(z1y,z)z — <l>(t)g(x1y) +  v(t)h(x,y1z)  ̂ ^

R I h(-toP » V (R + ! [ n ’ R !:  / ’ /l6 C (R3’ R); s e C(R2, R); 6 C(R+,R);
. ,* ’ . . *■ ’ ° ° 2’ ^ and p depend only on the arguments

displaced explicitly and * / ( « , „ , , )  =  £ , ( * , * * )  =

T h( Zl I  J ,  ,y,Z? '  j s f a v )  =  gx(x,y), & h {x ,y ,z)  =  hx(x ,y ,z ),
r f [ X A d  y x ,ly ,*) ’ i m  =  i t W )  =
(p (t) an dt<p(t) — (p (t) exist and are continuous for all x ,y ,z  and t. As usual, 
condition for uniqueness will be assumed and x,ix "yx/"as elsewhere, stand for 
differentiation with respect to the independent variable t.

Equation (1.2), for p(t,x ,p ,z) =  0, p(t,x,p,z) =  p(t) and p (t,x ,y ,z) ^  0, 
have been the object of a good deal of research over the past several ’years. 
See for instance Reissig et. al. [8], Ademola, et. al. [1, 2], Afuwape [3], 
Bereketoglu and Gyori [4], Ezeilo [5], Ezeilo and Tejumola [6], Omeike [7], Swick 
[9], Tung [10] and the references therein. These works were done with the aid 
of Lyapunov functions or Yoshizawa functions except in [3], where frequency 
domain approach was used.

In [10] Tung established conditions for boundedness of solutions of a third- 
order nonlinear third-order nonlinear differential equation

x'" +  /(x ,x ',x " )x "  4- g{x, x') +  /i ^ x ^ x " )  =  p (t,x ,x ',x "). (1.3)

Recently, Ademola, et. al. [1] and Omeike [7] studied conditions under which all 
solutions of the third-order differential equation (1.3) were ultimately bounded 
using a complete Yoshizawa and a complete Lyapunov functions respectively. 
However, the problem of stability and ultimate boundedness of solutions in 
which the nonlinear terms (the restoring terms in particular) are multiple of 
functions of t, are scarce.

Our aim in this paper is to study uniform boundedness and conditions under 
which all solutions x(t), its first and second derivatives tend to zero as t -> oo 
when p (t ,x ,x ',x ")  =  0 in (1.1). We also established conditions for uniform 
ultimate boundedness of solutions of equation (1.1). Our results generalize 
many results which have been discussed in [8] and include the result in [7]. 
This work is motivated from the works of Ademola, et. al. [2], Omeike [7] and
Tung [10]. IB
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2. Main Results

In the case p(£,x, y, z) =  0, equation (1.2) becomes

x' =  y ’ y' =  *• z' =  “ 0 (t)/(x , 2/, *)* -  0(t)y(x, 2/) -  y, 2) (2.1)

with the following result.

Theorem 1. Further to the basic assumptions on the functions 
ip, 0 and <p, suppose that a, ax, 6, 61, c, <50, €0, -00, 0 i, 0o, 0i , <00 and <01 are positive 
constants and that:

(i) *00 <  0 (t) <  *0i , 0o <  0(t) <  and <po <  <p(t) <  <pi ôr all t >  0;

(ii) /i(0, 0,0) =  0, <5o <  h(x,y, z)/x  for all x ±  0,y and z\

(iii) hx(x ,0, 0) <  c for all x;

(iv) y(0, 0) =  0, 6 <  y(x,y)/y <  b\ for all x,y ^  0;

(v) a <  /(x , y, 2:) <  ai for aii x, y, 2 and a& >  c;

(vi) sup(>o[|0, (̂ )| 4- |0'(t)| 4- \<p'(t)\] <  «o;

(vii) gx(x,y) <  o> yfx(x,y>z) <  0 a11 XM

(viii) hy(x, y, 0) >  0, hz( x ,0 ,z ) > 0 , y f ,{x ,y ,z )  >  0 for all x ,y ,z .

Then every solution (x{t),y(t), z(t)) of (2.1) is uniform-bounded and satisfies 
x(t) ->  0, j/(t) — 0, z(t) — 0 as t -  oo.

Remark 2. The hypotheses: ip(t) >  ipot 0(t) >  0o> <p(t) <  <pi, /i(x ,0 ,0)/x  
>  <50 x ^  0, y (x ,y )/y  > 6  y 7̂  0, /ix(x ,0, 0) <  c and f(x ,y ,z )  >  a imply the
existence of positive constants a and /3, satisfying

^  <  a <  *0oa (2 .2a)

and
/3 <  min |(ah0o0o “  ctpi)rj\\ 60o; ^ (^ 0  ”  Q0772^» (2 .2b)

where
, r- 1  hl2l _1 

T]i =  14-0-01 4- £0 <Po ^°i y J JIB
ADAN U

NIV
ERSITY

 LI
BRARY



14
A.T. Ademola, P.O. Arawomo

and

772 ~  i1 +  S° V o  V o [/(x , y, z) -  a]2] 

are generalization of Routh-Hurwitz stability criteria.

-1

g{y) and h(x z f s  w  ^  ~  =  lj f ( x ’ V<z)z =  /(*)> 9(x,v) =
with those of Ademola in [2] ^  6 COnclusion of Theorem 1 coincides

(n) Whenever 3/ 2) =  f( t ,x ,y ) , <f>(t)g(x,y) =  r(t)g{y), wcidip(t)h{x,y,
c • i • rr\i S° ’ conc ûsi°n of Theorem 1 coincides with that of Swick in [9].

(iii) Moreover, hypotheses of Theorem 1 (in particular on functions h and / )  
are less restrictive than those in [2] and [9], respectively.

In what follows, .D, Do, D i , • • • , D 15 denote finite positive constants whose 
magnitudes depend only on aiaiib,bi1c,6o,8i1i/>oiifa,</>o,<l>u<po,<pu€o, €i,Po, 
Pi and p. The D ’s without suffixes are not necessarily the same each time they 
occur, but each of the numbered D's: Do, D\, • • • , D 15 retains a fixed identity 
throughout.

The proofs of the above and the subsequent results depend on a continuously 
differentiable function V  =  V(t, x, y, z) defined by

2V  =  2 [a +  aip(t)]ip(t) f  /i(£, 0 ,0 )d£ +  4ycp(t)h(x, 0,0) +  2a(3'ip{t)xy
Jo

+  4(j)(t) f  g(x, r)dr +  2[a +  aip(t)\ip(t) f  r /(a :,r ,0)dr 4- 2z2
Jo Jo

+  0 y 2 +  b0<t>(t)x2 +  2 0xz  +  2[a +  a^{t))yz,

where a  and 0  are positive constants defined in (2 .2a) and (2 .2b) respectively. 
This function and its derivative with respect to the independent variable t, 
satisfies some fundamental inequalities as seen in the following lemmas.

L em m a 4 . Subject to assumptions (i)-(v) of Theorem 1, V{t, 0 ,0 ,0) =  0 
and there exist positive constants D0 =  D0(a,b,c,«,P,So^oAo,Vo,<Px) and 
D l = D 1( a , b , c , a such that

D„( (̂<) + « 2 ( t ) + A0) < V(*.*,».0 s DiCAO +  A0 + A0)IB
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and

V(t, x, y, z) -► oo as x2(t) +  y2(t) +  z2(t) -»  oo.

Proof. Clearly V(t, 0,0,0) =  0. Since 6 ^ 0  /  0(t) and /i(0,0,0) =  0, by 
hypotheses of Theorem 1 , then equation (2 .3) can be recast in the form

Tdr +  -(a y  +  z)‘V = L  { tQ +  r ,0) -  [a2 +  a V (t)]\
ip(t) f X f f ^

+  -P y2 + 2<j>(t) |5( ^ t) _  b| ̂  +  \ (PX +  <«/’(t)y +  z)

_i_ -  n\hA,r+\ /oi- 2

(2.4)

In view of hypotheses (i) and (v) of Theorem 1 , *(*) >  *(*) >  4>o and
/ ( I ,  y, 0) >  a for all x, y and t >  0, so that

T { [ a  +  aV>(t)]^(t)/(x, r ,0) -  [a2 +  a ^ (t)]}r d r  >  \ a (a ^  -  a)y\  (2 .5a)

From hypotheses (i)-(iii) of Theorem 1 , i/>(t) >  ^o, <K0 >  4>o, <p(t) <  <fii 
h(x, 0 ,0 ) /x  >  (50 and hx(x,0,0) <  c so that

[  {[a +  aip(t)]b<p(t) -  2<p(t)h(:(Z, 0, 0)}ft(£, 0, 0)d£ >  773X2, (2 .5b)V 0

where 773 =  ^{(a- 4- a0o)60o — 2c(pi}<5o. Finally, since 0 (0  >  (f>o, we obtain

(60(t) -  (3)x2 >  (60o -  /3)x2. (2.5c)

On gathering estimates (2.5a)-(2.5c), into (2.4), we obtain

V  >  i { 5 _ 1<?l)o 1^o<Po[(« +  arl)o)b(j>o -  2c<pi] +  (3(b<t>o -  P)}x2 +  -(a y  +  z)2 

+  -[a(ai/j0 ~  a) +  j3]y2 +  6_ 1<^ l [b<t>oy +  <A)50x]2 +  ^{Px +  aiPoy +  z]2. (2 .6)
In view of (2.2a) and (2.2b), we have aip0 >  a, abipofo >  c<Pi and b<t>o >  P, such 
that estimate (2 .6) is positive definite, thus there exists a positive constant D2
such that „ „ „

V  >  Di(x2 +  y2 +  z )• (2.7)
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16 A.T. Ademola, P.O. Arawomo ^

of Lemma 4) condition (“ ) of Theorem 
(M  M  f *  *  *  °  SinCe ft( ° -° .° )  =  0. Also, in view of 

b « o m i ’ ’ Theorem 1 and Schwartz inequality, equation (2.3)

^  <  T]4,X2 +  T]5y2 +  T76Z2,

l M ? + 2 b j ! ^ 2 w + a  +  0 : ^  +  a^ i +  2)<Vi], V5 =  |[[(a +  at/;1)a1 +a(/?  +  

positive J L ,  £  =+  ^  * "  ‘  *

v  <  D3(z2 +  y2 +  *»).

Rom estimate (2 7) it follows that V(t, 0,0 ,0) =  0 if and only if z2 +3/2+ * 2 =  0 
and V(t, z, y ,z )>  0 for ^  +  hence

^(*1 x ! y> z) —> 00 as Z2 +  y2 +  z2 —► oo.

This completes the proof of Lemma 4. □

Lemma 5. Under the hypotheses of Theorem 1, there is a positive con­
stant D  =  D(a, 6, c, <50, e, i/>o, 4>o, <Po> <Pi, a, /?) such that along a solution of (2.1)

V' =  j t V(t, x, y, z) <  —D(z2(t) +  y2(t) +  z2(t)) <  0.

Proof. Along any solution (x(t),y(t),z(t)) of (2 .1 ), we have

V(21) =  Wi +  W2 + W3 -  (W4 + W5) -  m t)  -  6
L y

-# /> (* )  [ /( X>J/,*) ~a]xz,

where

(2 .8)

Wi :=  af3ip{t)y2 +  2/3yz;

W2 :=  2(j>(t)y f  gx(x,T)dr +  [a +  aip(t)}i>{t)y [  Tfx(x,T,0)dr-,
Jo Jo

W3 := {[a +  aip(t)]tp'{t) + atf (t)<p(t)} f  h{£,0,0)<% + 2<t>\t) f  g{x,r)dr
J 0 J 0

+2tp'(t)h(x, 0,0)y +  [a +  2ail)(t)]ip'(t) f  r/(z,T,0)dr
J o

+-bf3(p'{t)x2 +  a(3ip'{t)xy +  aip\t)yz;
2
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IV4 :=  [a+a^(t)\<fi{t)y2 j + 2 ip(t)t* J h{x>y,z) — h (x,0 ,0)

and

W 5 :=  0(p{t)h X̂' ^ - ^  x2 4- jja  4- a^(t)]0(t)- -^ y - -  2cp(t)/ix(x,0,Cojy2 

+ j2̂ (*)/(®, 1/, 2) -  [a 4- a0(t)]J z2.

Now, from the obvious inequality 2|p||q| <  p2 +  q2 and i/>(t) <  0 i ,  we have

Wx <  j3[(a^i 4- l)y 2 +  z2].

By hypothesis (vii) of Theorem 1, we obtain

4-[a 4- a^(t)]^(t)y22 -  / ( * , ! / ,0 )

VV2 < 0 .

Furthermore, h(0,0,0) =  0 implies that /i(* ,0 ,0 )/x  < c for x ^  0. Also </,(*) <
t/>i, 0(t) <  0 1 , <?(*) <  <pi, g (x ,y )/ y  <  bi for all y =£ 0 and / ( x ,y ,0) <  ai. With  
these conditions, we have

vy3 <  \ac (v>! +  /3)|V»'(t)| +  !&/3|4>'(t)| +  |c[q +  aifo +  2]|v>'(i)| j x 2

+ i[a i(a  +  2aipx) +  a(/3 +  +  61|0'(t)| +  <V(t)|lya +  \ a W {t )  (z2.

Thus, there are positive constants D4, As, As such that

W 3 <  m a x {D 4, As, As}l|^'(t)| +  \<t>'{t)\ +  |cp'(t)|](x2 +  y 2 +  z2),

where D 4 =  \ max{ac(<pi 4- 0), b0, c(a 4- a 0 i)} , D 5 =  m ax{l[ai(a  4- 2a^i) 4- 
a(0  4- 1)], 61, c} and D 6 =  ±a.

By assumption (viii) of Theorem 1 for y  ^  0, we have

+  (29a) 

=  [oi 4- a0(t)]{p(t)y2/iy(x, 0xy, 0) >  0,

0 <  6>i <  1 and when y  =  0, [ca 4- a'ip(t)]^p{t)y2hy (x, 9\y, 0) =  0.IB
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NIV
ERSITY

 LI
BRARY



18 A.T. Ademola, P.O. Arawomo

9b)

Similarly, for z ±  0, we have

z . >  o. ■ (2.

0 <  2̂ ^   ̂ 2</?(t) 2̂h2(a;,0, O ẑ) =  0 when z =  0. Also for z ^  0, we obtain

[a +  at/>(t)]^(t)j/z2 j ~ * ) - / ( * , a, 0) j  g ^

=  [a +  a-0(t)]^(t)yz2/ 2(a;, y, 03*) >  0,

0 <  03 <  1 and [a +  aip(t)]iP(t)yz2 f z(x,y, 03z) =  0 when * =  0.
A combination of (2.9a), (2.9b) and (2.9c) yields

W4 >  0.

Also, by hypotheses (i) and (ii) of Theorem 1, we obtain

f3(p(t)h(x, y, z)x >  (36o(pox2. (2 .10a)

Since ip(t) >  t/>o, <j>(t) >  <£0, ip(t) <  </?i, /ia;(a:,0,0) <  c and g(x ,y)/y  >  b for all 
x, y 0, we have

[or +  a^(t)]<j)(t)- - X- 'y  ̂ — 2(p(t)hx(x,0,0) >  (a +  arpo)b(/>o — 2op\.
y

(2 .10b)

(2 .10c)

By conditions (i) and (v) of Theorem 1, we find that

2ip(t)f(x, y, z) — [a +  aip(t)\ >  aipo -  

Combining estimates (2.10a), (2.10b) and (2.10c), we have

W 5 >  pS0(fox2 +  [(a +  at/>o)b<£o -  2 c<pi]y2 +  (aV>o -  oi)z2.

On gathering estimates Wi (i =  1 ,2 ,3 ,4 ,5) with (2.8), we obtain

V{2.i) <  — ̂ 0So(pox2 — [(ck 4- aipo)b<po -  2ap\ — (3(aipi +  l)]y2

— (aipo — a — P)z2 — (We +  Wj)
+  D 7[\4>'(t)\ +  |0'(t)| +  W{t)\}{x2 +  y2 +  z2),

2 ^  -  b\xy, W 7 =  \(350<f0x2 +  Pipo[f{x,y, z) -

(2.12a)

(2.11)

where We =  \p5o<Pox2 +  P4>o 

a\xz and D7 =  max{L»4, 0 5l £>e}- On completing the squares, we have

W 6 = >  -  bj y ‘
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a n d  u n i f o r m  u l t i m a t e 19g'TABlL lT Y

and — ~/3dn^1 u>r1 1A2f f ,. . 0 Vo[f(x,y)2\ _ aia 3
since are pom^ve constants, it J ’ (2.12b)
0 and (x +  2d0 V 0 ̂ [ / ( x ,  y ,*) _  Qi ,a >  n at fx+2<5o V oV oI**5*^—6]yl» >

“ d  < 2 1 2 b )  “ “  ( 2 1 1 > “  ^ w ^ * "  w i i ,  S 4
V(3.3) ^  - ° b{x +  y2 +  22) +  D7[|v/(f)| . |

where Dg =  m i n { ^ 0<p0i _  +  ,¥> W IK * 2 +  y2 +  (2 .1 3)

Finally, by condition (vi) Df Tfc 2 ^ °  -  <*)}.
« ...  D . >  then w , c »  ^  ■“ *“  ~ch

V(2 1) ^  ~A>(x2 +  ya +  z2) 9 SU that

« »  P «  *

Proof o f Theorem  1. Let (x (t),y (t), z(t)) be any solution of (2.1). From 
Lemma 4 and Lemma 5 all solutions of (2.1) are uniform bounded (see p. 38-39 
in [11])* Furthermore, from Lemma 5, we have V ' <  — Dg(x2 +  y2 +  z2). Let 
W  (X )  =  D q(x  4- y +  z ), a positive definite function with respect to a closed 
get Cl =  { (x ,y , a:)lx =  0 ,y  =  0 ,z  =  0 } , then V ' <  — W ( X ) .  Since h (x ,y , z), is 
continuous for all x ,y ,z  and functions *0 (t), <£(t), <p(t), / ( x ,y ,z )  and y(x ,y) axe 
bounded above, it follows that

lin t, x )  H
y
z

—<p(t)h{x,y,z) — <t>{t)g(x,y) — t/>(t)/(x, y, z)z

is bounded for all t when A  belongs to any compact subset of R 3. Since x =  
° ’ 2 /“  2 — 0  on the set Q , it follows from Theorem 14.1 p.60-61 in [111 that
x(t) —  0 , y(t) -*• 0, z(t) —  0 as t -v  oo. n

T h e o re m  6 . Suppose that a, 6, c, 5o, co, €i, t/>o> t/>i, </>o, <P0i <pi are positive 
constants and Pi >  0 so that:

(i) hypotheses (i)-(viii) of Theorem 1 hold;

(ii) |p(t, x , y, z)| <  pi(t) +  p2(t)(|x| +  \y| +  |z|) where pi(t) and p2(t) are non­
negative continuous functions satisfying

0 <  pi(t) <  Pi (2.14)

and
0 <  P2(f) <  Cl- (2.15)

IB
ADAN U

NIV
ERSITY

 LI
BRARY



20
A.T. Ademola, P.O. Arawomo

Then the solution (®(t),i/(t),s(t)) of (1 .2) is uniformly ultimately bounded.

Lemma T. Subject to the conditions of Theorem 2.6 there exists positive 
constant Dio depending only on a,&,c,<f0, ^o,^i,<£o,<Po,<Pi, eo,ei,<*, and Pi 
5UCh that for any solution (x(t),y(t),z(t)) of (1 .2)

V* =  ^ V (t ,  x(t)fy(t), z(t)) <  - D  10(x2 +  y2 +  z2b

proof. Along a solution (x(£),y(t), z(t)) of (1.2), we have

V(i.2) =  v (2.\) +  [/3x +  [a +  ai/>(t)]y +  2z]p(i, a:, y, z).

In view of (2.13), hypotheses (vi) of Theorem 1 and (ii) of Theorem 6, We find 

V(i.2) ^  -D si*2 +  y2 +  22) +  Dii(|x| +  |y| +  \z\)\p{t,x,y,z)\

+D?(W (t)\  +  |*'(t)| +  |v>'(t)l)(*2 +  y2 +  z2)

<  —Ds(x2 +  y2 +  z2) +  D 7cq(x2 +  y2 +  z2)

+£>n(|x| +  |y| +  |z|)[p!(t) +  P2(«)(|x| +  |y| +  |z|)],

where D\\ =  max{/3, ct -f at/>o,2}. By (2.14) and (2.15) and the Schwartz in­
equality, we obtain

Vj[i.2) — — — Djeo — 3jDnei)(x2 +  y2 +  z2) +  3l 2̂P\Dn(x2 +  y2 +

Again choose eo and ei so small so that D q >  Djeo -f 3-Dnci then there exist 
positive constants D \2 and D \s such that

v ('12) <  - D 12(x2 +  y2 +  Z2) +  D i3(x2 +  y2 +  z2)1/2. (2.16)

Choose (x2 -+- y2 +  z2)1/2 >  2.Df2ljC>i3 =  &14 the inequality in (2.16) becomes

V^.2) < - D lf>(x2+ y 2 +  z2)i

where P 15 =  5 D 12. ^
Proof, of Theorem 2.6. The proof of Theorem 2.6 follows from Lemma 4,

Lemma 7 and Theorem 10.4, p. 42 in [11] that the solution (x(*),y(*),*(*)) of 
(1 .2) is uniform ultimately bounded. DIB
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Remark 8. As usually, if x ',x")  =  a, 4>{t)g{x, x') =  bx',
<p(t)h(x,x',x') =  cx and p(t,x ,x ’ ,x ")  =  0 in (1 .1) all hypotheses of Theorem
1 reduce to

a >  0,6 >  0, c >  0, a6 — c >  0

which is the Routh-Hurwitz criterion for the global asymptotic stability of the 
zero solution of the equation

xm 4- ax" 4- bx' 4- cx =  0.

Remark 9. If ^(t) =  <£(t) =  tp{t) =  1 and P2 {t) =  0, then system (1.2) 
reduces to that studied by Omeike in [7], thus our result includes that of [7]. In 
addition, the hypothesis on the function f (x ,y ,  z) is weaker than those used by 
Omeike in [7], since there it was required that f (x ,y ,  z) >  0. Hence, our result 
generalizes that of [7].
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