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STABILITY AND UNIFORM ULTIMATE BOUNDEDNESS OF

SOLUTIONS OF SOME THIRD-ORDER DIFFERENTIAL

EQUATIONS

A. T. ADEMOLA AND P. O. ARAWOMO

Abstract. The paper is concerned with the stability and uniform ulti-
mate boundedness for all solutions of a third order nonlinear differential
equations (1.1). Sufficient conditions under which all solutions x(t), its first
and second derivatives tend to zero as t → ∞ are given.

1. Introduction

Nonlinear differential equations of second-, third-, fourth- and higher order
have been extensively studied with higher degree of generality. In particular
there have been interesting works on asymptotic behavior, boundedness, pe-
riodicity, almost periodicity and stability of solutions of third-order nonlinear
differential equations. For over four decades many authors have dealt with
stability and boundedness of solutions of third order differential equations and
obtained many interesting results, see for instance Reissig et. al., [10], a sur-
vey book and Ademola et. al., [1, 2, 3], Afuwape [4], Chukwu [5], Ezeilo [6],
Hara [7], Omeike [9], Swick [11], Tunç[12] and the references cited therein.
These works were done with the aid of Liapunov functions except in [4] were
frequency domain approach was used. With respect to our observation in the
relevant literature, works on the stability and uniform ultimate boundedness
of solution of nonlinear non-autonomous third order differential equation (1.1)
using a complete Liapunov function are scarce.
In this paper, we consider the following third order differential equation

(1.1)
...
x + f(t, x, ẋ, ẍ)ẍ+ q(t)g(ẋ) + r(t)h(x) = p(t, x, ẋ, ẍ),

or its equivalent system derived by setting ẋ = y and ẍ = z to get

(1.2) ẋ = y, ẏ = z, ż = p(t, x, y, z)− f(t, x, y, z)z − q(t)g(y)− r(t)h(x),
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where: f, p ∈ C(R+×R
3,R); g, h ∈ C(R,R); q, r ∈ C(R+,R); R+ = [0,∞) and

R = (−∞,∞). It is supposed that the functions f, g, h, q, r and p depend only
on the arguments displayed explicitly, and the dots, as elsewhere, denote differ-
entiation with respect to the independent variable t. However we shall require
that the derivatives ∂

∂t
f(t, x, y, z) = ft(t, x, y, z),

∂
∂x
f(t, x, y, z) = fx(t, x, y, z),

d
dx
h(x) = h′(x), d

dt
q(t) = q′(t) and d

dt
r(t) = r′(t) exist and are continuous and

uniqueness of solutions of (1.1) will be assumed. We shall use Liapunov’s sec-
ond (or direct) method as our basic tool to achieve the desired results. The
results obtained in this investigation improves the existing results on the third
order non-linear differential equations in the literature.

2. Some Preliminaries

The following results will be basic to the proofs of our results. We do not
give the proofs since they are found in [13]. Consider the equation

(2.1) Ẋ = F (t, X),

where X = (x1, · · · , xn), F ∈ C(R+ × R
n,Rn), R+ = [0,∞) and R

n is the
n−dimensional Euclidean space.

Theorem 1. Suppose that there exists a Liapunov function V (t, X) defined on
R

+, ‖X‖ ≥ K, where K may be large, which satisfies the following conditions:

(i) a(‖X‖) ≤ V (t, X) ≤ b(‖X‖), where a(r) ∈ CI (i.e continuous and
increasing), a(r) → ∞ as r → ∞ and b(r) ∈ CI.

(ii) V̇(2.1)(t, X) ≤ 0.

Then the solutions of (2.1) are uniformly bounded.

Theorem 2. Suppose that F (t, X) of the system (2.1) is bounded for all t
when X belongs to an arbitrary compact set in R

n. Moreover, suppose that
there exists a non-negative Liapunov function V (t, X) such that

V̇(2.1)(t, X) ≤ −W (X),

where W (X) is positive definite with respect to a closed set Ω in the space R
n.

Then every bounded solution of (2.1) approaches Ω as t → ∞.

Theorem 3. Under the assumptions in Theorem 2.1, if

V̇(2.1)(t, X) ≤ −c(‖X‖)

where c(r) ∈ CI, then the solutions of (2.1) are uniformly ultimately bounded.

3. Main Results

In the case p(t, x, ẋ, ẍ) ≡ 0, (1.1) becomes

(3.1)
...
x + f(t, x, ẋ, ẍ)ẍ+ q(t)g(ẋ) + r(t)h(x) = 0,

or its equivalent system

(3.2) ẋ = y, ẏ = z, ż = −f(t, x, y, z)z − q(t)g(y)− r(t)h(x),
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with the following results.

Theorem 4. In addition to the fundamental assumptions on f, g, h, q and r,
suppose that δ0, δ1, a, a1, b, b1, c, are positive constants and that:

(i) h(0) = 0, δ0 ≤ h(x)/x (x 6= 0);
(ii) g(0) = 0, b ≤ g(y)/y ≤ b1 (y 6= 0);
(iii) h′(x) ≤ c for all x;
(iv) δ1 ≤ r(t) ≤ q(t), r′(t) ≤ q′(t) ≤ 0 for all t ≥ 0;
(v) a ≤ f(t, x, y, z) ≤ a1 for all x, y, z, t ≥ 0 and ab > c;
(vi) ft(t, x, y, 0) ≤ 0, yfx(t, x, y, 0) ≤ 0 for all x, y and t ≥ 0.

Then every solution (x(t), y(t), z(t)) of (3.2) is uniformly bounded and satisfies

(3.3) x(t) → 0, y(t) → 0, z(t) → 0

as t → ∞.

Theorem 5. Suppose that δ0, δ1, a, b, c are positive constants and that:

(i) conditions (i), (iii) and (vi) of Theorem 4 hold;
(ii) g(0) = 0, g(y)/y ≥ b (y 6= 0);
(iii) f(t, x, y, z) ≥ a for all x, y, z and t ≥ 0.

Then every solution (x(t), y(t), z(t)) of (3.2) is bounded and satisfies (3.3) as
t → ∞.

Theorem 6. Further to the basic assumptions on f, g, h, p, q and r, suppose
that δ0, δ1, a, b, c, P0 are positive constants and that:

(i) conditions (i), (iii)-(vi), of Theorem 4 hold;
(ii) b ≤ g(y)/y ≤ b1 (y 6= 0);
(iii) |p(t, x, y, z)| ≤ P0 < ∞ for all x, y, z and t ≥ 0.

Then every solution (x(t), y(t), z(t)) of (1.2) is uniformly ultimately bounded.

Remark 7. It should be noted that in the special case where f(t, x, ẋ, ẍ) = a,
g(ẋ) = by, h(x) = cx, q(t) ≡ 1, r(t) ≡ 1 and p(t, x, ẋ, ẍ) = 0 in (1.1), then
assumptions (i)-(vi) reduce to a > 0, b > 0, ab − c > 0, c > 0 which is
the Routh-Harwitz condition for the global asymptotic stability of the zero
solution of the equation

...
x + aẍ+ bẋ+ cx = 0.

Remark 8. (i) In the special case f(t, x, y, z) = f(x, y), q(t) ≡ 1, and r(t) ≡ 1
the assumptions of Theorem 4 are less restrictive than those established by
Ezeilo ([6],Theorem 1), our result therefore improves [6].
(ii) Also, whenever f(t, x, y, z) ≡ p(t) system (3.2) specializes to that studied

by Swick [11] Theorem 1 and our hypotheses and conclusion coincide with that
of Swick except that:

(a) the hypothesis on q̇(t) and ṙ(t) in [11] required that they be bounded
below by −L for some L > 0, which is not necessary in this case.
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54 A. T. ADEMOLA AND P. O. ARAWOMO

(b) the condition on p′(t) in [11] Theorem 1 was that
1

2
p′(t) ≤ δ3 ≤ δ1(b−

αc), this condition is too strong. It is replaced by a considerably weaker
one on the equivalent function ft(t, x, y, z) in Theorem 4.

Hence, our result in Theorem 4 generalizes Theorem 1 in [11].
(iii) Whenever f(t, x, y, z) ≡ p(t) and p(t, x, y, z) ≡ e(t) system (1.2) reduces

to that studied by Swick [11] Theorem 5. All hypotheses of Theorem 5 in [11]
are contained in Theorem 6. In addition, the assumption on the functions ṙ(t)
and q̇(t) for all t ≥ 0 are weaker than that of [11]. Finally, the main tool (the
Lyapunov function) used in Theorem 6 is complete (see [5]) compared to an
incomplete Lyapunov function used in [11].
(iv) In the case with f(t, x, y, z) ≡ a(t)f(y) and p(t, x, y, z) ≡ e(t) Eq. (1.2)

reduces to that discussed by Mehri and Shadman [8]. In spite of the application
of the energy function they used as the main tool, our result in Theorem 6
generalizes theirs.
(v) In the case f(t, x, y, z) ≡ f(x, y) the hypotheses and conclusion of The-

orem 6 coincide with that of Ademola and Arawomo [1] Theorem 2. Hence,
Theorem 6 is an extension of [1] Theorem 2.
(vi) The situation when f(t, x, y, z) ≡ f(z), q(t) ≡ 1 and r(t) ≡ 1, the

hypotheses and conclusion of Theorem 4 coincide with that of Ademola et. al.,
[2], but the hypothesis that H(x) =

∫ x

0
h(ξ)dξ → ∞ as |x| → ∞ is not

necessary here.

For the rest of this article, δi (i = 0, 1, · · · , 11), P0 and Di (i = 0, 1, 2, 3)
stand for positive constants. Their identities are preserved throughout this
paper. Let H(x) =

∫ x

0
h(ξ)dξ, and G(y) =

∫ y

0
g(τ)dτ .

The main tool in the proofs of our results is the continuously differentiable
function V = V (t, x, y, z)

(3.4) 2V = 2(α+ a)r(t)H(x) + 4q(t)G(y) + 2(α + a)

∫ y

0

τf(t, x, τ, 0)dτ

+ 4r(t)h(x)y + bβx2 + βy2 + 2z2 + 2aβxy + 2βxz + 2(α + a)yz,

where α and β are positive constants such that

(3.5a) b−1c < α < a

and

(3.5b) 0 < β < min

{

(ab− c)a−1, (ab− c)δ1η1, (a− α)η2

}

,

where

η1 =

[

1 + a+ δ−1
0 δ−1

1 [q(t)
g(y)

y
− b]2

]

−1

and

η2 =
[

2
[

1 + δ−1
0 δ−1

1 [f(t, x, y, z)− a]2
]]

−1
.
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Lemma 9. Subject to the hypotheses of Theorem 4 V (t, 0, 0, 0) = 0 and there
exist constants D0 = D0(α, β, δ0, δ1, a, b, c) > 0 and D1 = D1(α, β, a, a1, b, b1, c,
q0, r0) > 0 such that for all t ≥ 0

(3.6a) D0(x
2(t) + y2(t) + z2(t)) ≤ V (t, x, y, z) ≤ D1(x

2(t) + y2(t) + z2(t)),

and

(3.6b) V (t, x(t), y(t), z(t)) → ∞ as x2(t) + y2(t) + z2(t) → ∞.

Furthermore, there exist a finite constant D2(α, β, δ0, δ1, a, b, c) > 0 such that
along a solution (x(t), y(t), z(t)) of (3.2),

(3.6c) V̇ ≡
d

dt
V (t, x(t), y(t), z(t)) ≤ −D2(x

2(t) + y2(t) + z2(t))

Proof. It is clear from (3.4)), V (t, 0, 0, 0) = 0. Indeed we can recast the terms
in (3.4) to obtain

(3.7) 2V = 2V1 + 2V2,

where

2V1 = r(t)

{

2b−1

∫ x

0

[αb− h′(ξ)]h(ξ)dξ + 2

∫ y

0

[

q(t)

r(t)

g(τ)

τ
− b

]

τdτ

+ b−1[by + h(x)]2
}

+ 2α

∫ y

0

[f(t, x, τ, 0)− α]τdτ + (z + αy)2

and

2V2 =

r(t)

{

2b−1

∫ x

0

[ab− h′(ξ)]h(ξ)dξ + 2

∫ y

0

[

q(t)

r(t)

g(τ)

τ
− b

]

τdτ + b−1[by + h(x)]2
}

+ 2a

∫ y

0

[f(t, x, τ, 0)− a]τdτ + βy2 + β(b− β)x2 + (βx+ ay + z)2.

In view of hypotheses (i) and (ii) of Theorem 4, the terms 2b−1
∫ x

0
[αb −

h′(ξ)]h(ξ)dξ and 2b−1
∫ x

0
[ab − h′(ξ)]h(ξ)dξ in the rearrangement for 2V1 and

2V2 satisfy

2b−1

∫ x

0

[(α + a)b− 2h′(ξ)]h(ξ)dξ ≥ δ0 [(α + a)b− 2c] b−1x2.

Since q(t) ≥ r(t) ≥ δ1 for all t ≥ 0, g(y)/y ≥ b (y 6= 0), h(x)/x ≥ δ0 (x 6= 0)
and f(t, x, y, z) ≥ a for all x, y, z and t ≥ 0, combining these estimates, (3.7)
yields

2V ≥
[

β(b− β) + δ0δ1[(α + a)b− 2c]b−1
]

x2 + [α(a− α) + β]y2

+ 2δ1(δ0x+ by)2 + (z + αy)2 + (βx+ ay + z)2.
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56 A. T. ADEMOLA AND P. O. ARAWOMO

By (3.5a) and (3.5b) αb > c, ab > c, a > α and b > β. Thus, there exists a
constant δ2 = δ2(α, β, δ0, δ1, a, b, c) > 0 small enough such that

(3.8) V ≥ δ2(x
2 + y2 + z2)

for all x, y, z.
Furthermore, since g(y)/y ≤ b1 (y 6= 0), h′(x) ≤ c for all x, h(0) = 0,

r′(t) ≤ q′(t) ≤ 0 for all t ≥ 0, f(t, x, y, z) ≤ a1 for all x, y, z and using the
inequality 2|x||y| ≤ x2 + y2, there exist constants δ3 > 0, δ4 > 0 and δ5 > 0
such that

2|V | ≤ δ3x
2 + δ4y

2 + δ5z
2,

where δ3 = (α+a+2)cr0+β(a+b+1), δ4 = 2(b1q1+cr0)+(α+a)(a1+1)+β(a+1)
and δ5 = (α + β + a + 2). Hence, there exists a positive constant δ6 =
1

2
max{δ3, δ4, δ5} such that

(3.9) V ≤ δ6(x
2 + y2 + z2).

On combining the inequalities in (3.8) and (3.9), we obtain (3.6a), and from
(3.8) it is clear that

(3.10) V ≡ V (t, x, y, z) → ∞ as x2 + y2 + z2 → ∞.

To deal with the other half of the lemma, let (x(t), y(t), z(t)) be any solution of
(3.2). Using (3.4) and the system (3.2), a direct computation of dV

dt
|(3.2) = V̇(3.2)

gives after simplification

(3.11) V̇(3.2) = W1 +W2 −W3 − β

[

q(t)
g(y)

y
− b

]

xy − β[f(t, x, y, z)− a]xz,

where

W1 = (α + a)r′(t)H(x) + 2q′(t)G(y) + 2r′(t)yh(x)

W2 = (α + a)

[
∫ y

0

τft(t, x, τ, 0)dτ + y

∫ y

0

τfx(t, x, τ, 0)dτ

]

+ aβy2 + 2βyz.

and

W3 = βr(t)h(x)x+ r(t)

[

(α + a)
q(t)

r(t)

g(y)

y
− 2h′(x)

]

y2

+ [2f(t, x, y, z)− (α+ a)]z2.

Since r′(t) ≤ q′(t) ≤ 0, we consider the following cases for W1:
(i) If r′(t) = 0, we have q′(t) = 0 so that W1 = 0.
(ii) For those t’s such that r′(t) < 0, we have

(3.12) W1 = r′(t)

[

(α + a)H(x) + 2
q′(t)

r′(t)
G(y) + 2yh(x)

]

.
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Since h(0) = 0, h(x)/x ≥ δ0 (x 6= 0), g(y)/y ≥ b (y 6= 0), h′(x) ≤ c for all x,
q′(t)

r′(t)
≥ 1 and (3.5a), the terms in the square bracket of (3.12) satisfies

b−1

∫ x

0

[(α + a)b− 2h′(ξ)]h(ξ)dξ+2

∫ y

0

[

g(y)

y
− b

]

τdτ + b−1(by+h(x))2 ≥ 0,

so that W1 ≤ 0.
Hence, in both cases, we have

(3.13a) W1 ≤ 0.

From condition (vi) of Theorem 4 and the fact that 2yz ≤ y2 + z2, we have

(3.13b) W2 ≤ (a + 1)βy2 + βz2.

Also since h(x)/x ≥ δ0 (x 6= 0), q(t) ≥ r(t) ≥ δ1 for all t ≥ 0, g(y)/y ≥ b
(y 6= 0), h′(x) ≤ c for all x and f(t, x, y, z) ≥ a for all x, y, z and t ≥ 0, it
follows that

(3.13c) W3 ≥ βδ0δ1x
2 + δ1[(α + a)b− 2c]y2 + (a− α)z2.

Combining (3.13a), (3.13b) and (3.13c) with (3.11) and simplify to get

V̇(3.2) ≤−
1

2
βδ0δ1x

2 −
β

4δ0δ1

[

δ0δ1x+ 2

[

q(t)
g(y)

y
− b

]

y

]2

−

{

δ1[(α + a)b− 2c]− β

[

(a+ 1) +
1

δ0δ1

[

q(t)
g(y)

y
− b

]2
]}

y2

−

{

(a− α)− β

[

1 +
1

δ0δ1
[f(t, x, y, z)− a]2

]}

z2

−
β

4δ0δ1
[δ0δ1x+ 2[f(t, x, y, z)− a]z]2 .

From (3.5a) and (3.5b) the above inequality becomes

V̇(3.2) ≤ −
1

2
βδ0δ1x

2 − δ1(αb− c)y2 −
1

2
(a− α)z2.

Hence, there exists a positive constant δ7 = δ7(α, β, δ0, δ1, a, b, c) such that

(3.14) V̇(3.2) ≤ −δ7(x
2 + y2 + z2)

for all x, y and z. This completes the proof of Lemma 9 �

Proof of Theorem 4. In view of (3.8), (3.9), (3.10) and (3.14) conditions (i) and
(ii) of Theorem 1 hold, that is all solutions of (3.2) are uniformly bounded.
From (3.14), we have W (X) = δ7(x

2 + y2 + z2) a positive definite function
with respect to a closed set Ω ≡ {(x, y, z) : W (x, y, z) = W (X) = 0} and
V̇ (t, X) ≤ −W (X).
Furthermore, from conditions (ii) and (v) of Theorem 4, the functions g(y)

and f(t, x, y, z) are bounded above respectively. Also, h(x), q(t) and r(t) are
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58 A. T. ADEMOLA AND P. O. ARAWOMO

continuous functions, it follows that F (t, X) is bounded for all t when X
belongs to any compact set of R3. Thus, by Theorem 2, the solutions of (3.2)
approach Ω = {(0, 0, 0)}, hence x(t) → 0, y(t) → 0, z(t) → 0, as t → ∞ which
completes the proof of Theorem 4. �

Proof of Theorem 5. The main tool in the proof of Theorem 5 is the function
V defined in (3.4). Clearly V (t, 0, 0, 0) = 0 and in view of the hypotheses
of Theorem 5, estimate (3.8) holds. Next we shall show that any solution
(x(t), y(t), z(t)) of the system (3.2) is bounded. To see this we claim that the
inequality

(3.15) V ≡ V (t, x(t), y(t), z(t)) ≤ k < ∞, t > 0,

where k is a constant necessarily implies the boundedness of x(t), y(t) and z(t)
for all t ≥ 0. To see this, since g(y)/y ≥ b (y 6= 0), r(t) ≥ q(t) for all t ≥ 0,
h(x)/x (x 6= 0) and f(t, x, y, 0) ≥ a for all x, y and t ≥ 0, so that (3.8) holds
and if the inequality in (3.15) holds, then

x2 + y2 + z2 ≤ 2δ−1
2 V ≤ 2δ−1

2 k.

Thus, there exists a positive constant δ8 such that

|x(t)| ≤ δ8, |y(t)| ≤ δ8, |z(t)| ≤ δ8,

where δ8 = 2δ−1
2 k. This completes the verification of the assertion in (3.15).

Following the procedure in the proof of Theorem 4, (3.3) holds as t → ∞. This
completes the proof of Theorem 5. �

Lemma 10. Subject to the hypotheses of Theorem 6 there exists a constant
D3 > 0 depending only on α, β, δ0, δ1, a, b, c and P such that along a solution
(x(t), y(t), z(t)) of (1.2)

V̇ ≤ −D3(x
2 + y2 + z2)

for all x, y, z and t ≥ 0.

Proof. Let (x(t), y(t), z(t)) be any solution of (1.2). Using (3.4) and the system
(1.2) an elementary calculation yields

V̇(1.2) = V̇(3.2) + [βx+ (α + a)y + 2z]p(t, x, y, z).

By (3.14), hypothesis (iii) of Theorem 6 and the inequality (|x|+ |y|+ |z|)2 ≤
3(x2 + y2 + z2), we have

V̇(1.2) ≤ −δ7(x
2 + y2 + z2) + δ9(x

2 + y2 + z2)1/2,

where δ9 = 31/2P0max(β; α + a; 2). Choose (x2 + y2 + z2)1/2 ≥ δ10 = 2δ−1
7 δ9,

the above inequality becomes

(3.16) V̇(1.2) ≤ −δ11(x
2 + y2 + z2),

where δ11 =
1

2
δ7. This completes the proof of Lemma 10. �
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Proof of Theorem 6. From (3.8), (3.9), (3.10) and (3.16) hypotheses of Theo-
rem 3 are satisfied. This completes the proof of Theorem 6. �
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