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Abstract

Without the usual assumption of monotonicity, we establish some results on the theory of hyper-
bolic differential inequalities which enable us to produce a majorising interval function for the
solution of the hyperbolic initial value problem. Using this function, a variation of parameters
formula and interval iterative technique, the existence of solution to the problem is established.
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1. Introduction

In this paper, we utilize interval analytic methods in the investigation of the existence of solution of the hyper-
bolic partial differential equation

z, = f(x, y,z,zx,zy),(x, y)ely (1.1)
with characteristic initial values
2(x,0)=0o(x); xel,
2(0.y)=7(

y); yel,. (1.2)
0
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f eC(Iab xR*R), ceC'(I,,R), reC'(l,,R) and zeC**(l,,R) where zeC"(l,,R) means that
zis continuous on 1., and possesses continuous partial derivatives z,,z ,z,, on I,.

Without the assumption of monotonicity on the function f we establish some results on the theory of
hyperbolic differential inequalities which enable us to produce a majorizing interval function for the solution of
the equation. With the use of a variation of parameters formula used in [1] and theorem 5.7 of [2] on interval
iterative technique we generate a nested sequence of interval functions which converges to an interval solution.
This interval solution is thus a majorant of the solution of the equation and it coincides with the real valued solu-
tion if it is degenerate. Similar interval methods had earlier been used by some authors in [3]-[7] for solution to
differential equation but not for hyperbolic initial value problems. The result in this paper generalizes those of [1]
[8] as the monotonicity condition imposed on the function f is not in any way necessary.

The basic results in interval analysis used in this work are found in [2] [6] [7] [9]-[13] for readers who may
not be familiar with them.

2. Differential Inequalities and Majorisation of Solution

Definition 2.1: A function v e C"? ( Ia’b,R) is said to be an upper solution of the hyperbolic initial value prob-
lem(1.1)and (1.2) on 1, if

Vyy = f(x,y,v,vx,vy), (va)EIab
v (x,0)>0'(x), xel,,
v, (0,y)=7'(y), yel,,
v(0,0)>z,.

Definition 2.2: A function u eC”(Ia,b,R) is said to be a lower solution of the hyperbolic initial value

problem (1.1) and (1.2) on 1, if the reversed inequalities hold true with u in place of v in the specified in-

tervals.
Next, we shall consider some results concerning the upper and lower solutions of Equation (1.1) and condi-
tions (1.2).
Theorem 2.1: Suppose that u e C*(1,,,R) and
Uy < F(X y.u,u,,u,), (2.1)
Vy < f (x, y,v,vx,vy), (2.2)

<v,(x,0), xel,. (2.3)

Then we have
(u,ux,uy)ﬁ(v,vx,vy) onl, (2.4)

where the inequality is componentwise.
Proof: We shall establish this theorem by contradiction. From assumption (2.3) we see clearly that the theo-
rem is true for the point (0,0) on 1.

Suppose that inequality (2.4) is not true at a point (xo, Yo) € l,, and assume that
U(%o1 ¥o) > V(%01 ¥o), s8Y, (2.5)

then by assumption (2.3) x, and y, cannot both be zero.
Let h>0 besuchthat (x,,y,+h)el,, then u(x,y,+h)<v(x,Yy,+h) andso

u(Xo.yo+hg—U(X0’yo)}<Lm{v(xwyo+hg_v(x°'y°)}=vy(xg,)/o)

uy(XO'yO):Li_rB{
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Thus, we have, for y, #0 (or x, #0),
Yo Yo
U(XOvyo):u(Xo’O)"'_[uy(xo't)dtgv(xovo)+J.Vy(xo't)dtzvy(xo'yo)
0 0

and this contradicts assumption (2.5).
If y,=0, then x, =0 (orvice-versa) and for x, =0 we have

u(xO,yo)=u(x0,0):u(0,0)+x.fux(s,0)ds

X
<v(0,0)+ [v,(s,0)ds by condition (2.3)
0

=V(X,,0)
If y,#0 and x, =0 asimilar argument can be advanced to obtain u(0,y,)<v(0,y,). Hence,

U(%:Yo) < V(X9 Yo ),

and this is still a contradiction to our earlier assumption (2.5).
Suppose instead that

U (Xo, Yo ) > Vy (X0 Yo ). (2.6)

Then y, =0, otherwise condition (2.3) would immediately give the required contradiction.
Now for y, =0, let h>0 suchthat (x,,y,+h)el,, wehave u, (XY, +h)<v, (X, Y,+h), so

uxy(xo,yo):Iim{ux(xo'yo+h)_ux(xo'y°)}s |im{vx(x°’y°+h)_vx(XO’yf’)}:vxy(xo,yo)

h—0 h h—0 h

Yo

SUy (X0 Yo ) = Uy (%5,0) + Juxy (%o, t)dt
0
Yo
<V, (%,0)+ [v,, (%,t)ds by condition (2.3)
0

:VX(XO!yO)

This contradicts assumptions (2.6).

Similarly, if we assume that u, (X,,Y,)>V, (XY, ), we would also arrive at a contradiction. At x, =a and
Y, =b left hand derivatives are used to obtain the result.

Hence, we conclude that, the assertion (2.4) holds true on 1., and this proves the theorem.

Theorem 2.2: Let u and v be functions defined on 1, which satisfy assumptions (2.1), (2.2) and (2.3)
of Theorem 2.1. Suppose in addition that they satisfy the following conditions,

2, €[u(0,0),v(0,0)]
o'(x)e[u, (x,0),v, (x0)]; xel, 2.7)
7'(y)e [uy (0,y).v, (0, y)}; yel,

Then the solution z of problem (1.1) and (1.2) together with its derivatives z,,z, satisfy
(z,zx,zy)e([u,v],[ux,vx],[uy,vy})

On the rectangle, 1,,, where the inclusion is componentwise.
Proof: Notice that the lower endpoints of the intervals in Equation (2.7) satisfy assumption (2.3) of Theorem
2.1when v isreplaced by z.Therefore u and z satisfy the hypothesis of Theorem 2.1 and hence

(u u uy)s(z Z,,1 ) onl, (2.8)

s Uy 1 Exr fy
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Similarly, replacing u by z in assumption (2.3) we obtain the upper endpoints of the intervals in condi-
tions (2.7) and so by Theorem 2.1 we also have

(z.2,2,)<(vv,.vy) (2.9)

Combining inequalities (2.8) and (2.9) we have the desired result.

3. Construction and Existence of Solution

Our purpose in this section is to establish the existence of solution to the problem (1.1) satisfying initial values
(1.2) by means of interval analytic method. To this end an integral operator is constructed, the solution of the
resulting operator equation is equivalent to the solution of the initial value problem under consideration. An in-
terval extension of this operator is then used to generate a sequence of interval functions which converges to the
required solution.

Let zeC"(l,,R) besuchthat (u,u,.u,)<(zz,2,)<(v,v,,v,) on I, and a function
¢ 1, xR®* >R, defined by
go(x, y,z,zx,zy)z f(x,y,z,zx,zy)+/122—/lzx—lzy (3.1)

where f is the function in Equation (1.1) and A >0 is a constant suitably chosen such that ¢ >0. Clearly
it can be seen that ¢ is continuous on 1, xR®.
With this new function ¢, Equation (1.1) becomes

2, =0(XY,2,2,,2,) - A2+ 22, + Az, 3.2)

By using the variation of constant formula of Lemma 4.1 in [1], we obtain the solution of Equation (3.2), sa-
tisfying initial values (1.2) as:
z2(xy)=c(x)e" +7(y)e™ —z,e ) 1 e ) on I:(/)(S,t, 2,2,,2 )e’ﬂ'(s”)dsdt

1 Exr fy

Differentiating with respectto x, we obtain
2 (zy)=4z(xy)+e” {G'(X)_lG(X)JrJ'quo(X,t, 2,2,, zy)e*tdt}
and similarly by differentiating with respectto y we obtain
2, (xy) = A2(x y)+e {7 (y) - 27(y)+ [[ (s, v, 2,202, )e |

Eliminating the derivatives z, and 7z, by introducing the function z (x,y)=z,(x,y) and

7" (x, y) =2z,(x,y) intothe integro—xdifferentialyequations we obtain the system of integral equations
2(xy)=c(x)e” +r(y)e™ + 7, 1) onjox(p(s,t, 2,7, z”)e’“s*t)dsdt (3.3)
z(x,y)=4z(x,y)+e” {a’(x)—ﬂa(x)+joy¢(x,t, z, z*,z**)e‘“dt} (3.4)
77 (x,y)=4z(xy)+e” {r’(y)—/lr(y)+_[ox¢)(s, Y, 2,2, z“)e‘“ds} (3.5)

which is equivalent to the problem (3.2) and initial values (1.2).
Denoting the right hand side of these integral equations by pz, p*z and p*™z respectively, we have the
following:

z(x,y)=pz(x,y)
Z(xy)=pz(xYy) (3.6)
27 (% y)=p"2(xY)

With these we prove the following result.
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Lemma 3.1: Let u and V€C1'2(|ab,R) satisfy conditions (2.7) of Theorem 2.2. Suppose that for functions
y€C¥ (1,,R) with (u,u,,u,) (7.7.7,)<(vV,.v,) on 1, wehave

Uy < F(X Y7707, )= A2 (U=7)+ A(u, = 7,)+ A(u, - 7,) 37)
Vy > f (x, y,y,yx,;/y)—;tz (v=7)+2(v, —7/X)+}L(vy —7y)
where A is the constant appearing in Equation (3.1). Then the following hold true.
pA(x.y)e[u(xy).v(xy)]
pr(xy)e [u* (% y).V (X y)] (3.8)
pT(xy)elu”™ (xy),v (X Y)]

forall (x,y)el,.
Proof: We first consider the lower endpoints of the inclusions and differentiating we have, from Equation

(3.3)
(py), =Apy+e” {o-’(x)—/lo-(x)+_[0ygo(x,t,;/,y*,y**)e“‘dt}
differentiating again with respectto y we obtain
(py), =A(pr), +2e” {a'(x)—ﬁa(x)+ onw(x,t, 7y ;/**)e’“dt}Jr (p(x, Y7 (xy). 7 (xy). 7" (x y))
=2(py), +2{(p7), = 2pr}+o(xv.7.7".7")
This, by Equation (3.1) and assumption (3.7), gives
(pyx—u)Xy >-2%(py—u)+A(py-u), +/1(p;/—u)y.
Similarly by differentiating Equation (3.3) with respectto y, we obtain
(pr), = Apy +&" {T'(y)_m(x)q;;o(s, V7 (sy) 7 (s.y).77 (s y))e’“ds}

By conditions (2.1) and (3.7) we have (py-u)(0,0)>0,(py-u) (x,0)20, for xel, and
(p;/—u)y 0,y)20 for xel,. From these we see that (py—u) satisfies the assumptions of Lemma 4.2 of
[1] since (py—u)eC*?(1,,,R).

Thus

(py—u)(x,y)=0.
=u(xy)<pr(xy), (xy)ely,
(py-u),(xy)=0
Su (X Y)Spr(xy), (%Y)ely,
(py-u),(xy)=0
=u"(xy)<p r(xy), for (x,y)el,,
It could similarly be proved that
Py (X, y)<v(X,Y),
Pr(xy)<vi(xY),
and
Py (xY) =V (% Y), V(X y)€ly.

(=)
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Hence the lemma is established.
Theorem 3.1: Let the functions U,VEC1’2(|ab,R) satisfy conditions (2.7). Suppose that the function
f eC*(1,xR*R) issuch that

Uy < F(X Y7707y )= A7 (U=7)+ A(u, =7, )+ A(u, - 7,)
and
Vy > f(x,y,y,;/x,yy)—/iz(v—y)+/1(vx—yx)+/1(vy—;/y),
for function y € C**(1,,R) satisfying
(u,ux,uy)3(7,7X,7y)£(v,vx,vy) on l,,.

and 12>0, constant, suitably chosen in Equation (3.1).
Then there exists a convergent nested sequence of interval functions {Zn} such that the unique solution z
of Equations (1.1) and (1.2) satisfies

z(x,y)elimZ, (x,y)=Z(xy), ¥x,yel,
withz=27, Z degenerate where the initial interval Z, is given by

Zy (% y)=[u(xy).v(x.y)]-

Proof: From the construction earlier considered, we see that any solution of Equation (1.1) which satisfies
condition (1.2) solves the integral Equation (3.3). Conversely if z solves the integral Equation (3.3) we have
that

z,, = A(pz), +A(pz), -2%( pz)+(p(x, Y,2,1, zx,zy)
which by Equations (3.1) and (3.6) gives
7, =f(xv.22.12,),
with
2(0,0)=1z,, z(x,0)=0(x), 2(0,y)=7(y).

and these imply that z again solves the Equation (1.1) and satisfies condition (1.2). Therefore, we shall seek
the solution of the integral equation given by (3.3) which is transformed to the operator equation
Z=pz

Let Z be an interval function defined on 1., such that z(x,y)eZ(x,y) for (x,y)el,, and the in-
terval function @ an interval extension of the function ¢ defined in Equation (3.1). Then the interval integral
operator P defined by

PZ = (x)e” +7(y)e™ —z,e"" +e’“(“y).[oyj:(l>(s,t,z (s,it),Z2"(s,t),2” (s,t))e”“(s”)dsdt

is an interval majorant of p.
Then the problem reduces to solving the interval operator equation

Z=PZ.

However to determine Z we need to also determine Z* and Z™ which are respectively interval exten-
sions to the function z" and z™. This is done by solving the interval operator equations

Z'=PZ,and 2" =P"Z
With P” and P™ defined respectively by
PZ=AZ (xy)+e” {0 (x)~ Ao (x)+ [ O(xtZ (1), 2" (x1), 27 (x.1) e ct]

and

(=)
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P"Z =2Z(x, y)+e“{ j (s v.2(s,y).Z2"(s,y). 2" (s, y))e“ds}

which majorise the real operators p” and p~ respectively.
Define the sequences {Zn}{Z:}{Z:} by

Z. . =PZ.,n=012-- with
Zy =[u(xy).v(xy)],
Z', =P'Z,n=012- with

Z, :[u (%, y),V (X, y)} and
Z " =P7"Z ,n=0,12,--- with
Z;*:[u (x,y),v" (x,y)]

We have the sequence {Z,} as required.

We shall show that {Z } convergences to a limit. But this can only be so if the sequence {Z:} and {Z:*}
also converge.

By Theorem 5.7 of [2], these sequences converge if
P (Z0 ) cZ,,
P*(25)= Z, and
P™(z5)c 2y
Now for

Zy=[u(xy),v(xy)],
P(Zo)={pz:ze[u(x.y).v(x.y)]f <[ pu(xy) pv(x y)]<[u(xy).v(x )]

by the first inclusion of Equation (3.8). Hence
P(ZO) c Z,.
Similarly we have by the result given in Equation (3.8) of Lemma 3.1

P*([u*(x, YV (%, V)J) c [u*(x, y).v (X, y)]

and

P ([ () v () ] = [ (o) v (1)

Since these initial intervals satisfy the hypothesis of Theorem 5.7 of [2], the result of the theorem implies that
Z°,Z" and Z converge as sequences and are equally nested. Furthermore, the solution z of Equation (1.1)
satisfying condition (1.2) belongs to the limit function Z of the sequence {Zn}, that is,

z(x,y)eZ(x y):!mzn(x, y):ﬁzn(x y)

n=0
and this proves the theorem.

Lemma 3.2: Assume that the functions u,ve C“(Iab,R) satisfy conditions (2.7) and in addition they also

satisfy conditions (2.1) and (2.2). Suppose further that the function f appearing on the right hand side of Equa-
tion (1.1) satisfies:

f (x,y,a,ﬁ,y)— f (X’ y7a1!ﬁ117/1)2_/12 (a_a1)+ﬂ(ﬂ_ﬁ1)+l(7_71) 3.9)

whenever the functions y, S,a,y,, and ¢, are such that

()
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(u'ux’uy)S(“llﬂp?’l)g(a,ﬂ,}/)S(V,VX,Vy)

for constant 1 >0, suitably chosen. Then we have

py (X, y)e[u(xy).v(xy)]
Pw(xy)e [u* (xy),V (X, y)] (3.10)
p**y/(x,y)e[u**(x,y),v**(x, y)]
for any function  satisfying
(u,ux,uy)s(z//,z//x,z//y)s(v,vx,vy), (X, y) el
Proof: From inequality (2.1) we have
U, > —f(xy,u,u,u,)
Since
(u,ux,uy)é(l//,leyl/ly),
From inequality (3.9) we have
—A% (=) + A(w, —u)+ Ay, —u) < F (X ywp,owy )= F (X yuu,.u ) < (XY, ) -u,
and so
Uy, < f (x, y,l//,l//x,l//y)—ﬂ,z(u—l//)-i—ﬂ(ux —z//x)+/1(uy —wy)

which is the first inequality in (3.7).
Also from inequality (2.2) we have

Vg = f (x, y,v,vx,vy)
and using inequality (3.9) we have
A=)+ A —w ) AV ) < T (XYY )= (Y ) < vy - F(X Y,
Therefore
Vy 2 f(x, y,l,z/,l,z/x,l,z/y)—ﬁz(v—l//)+/l(vx—l//x)—i-/?.(vy—l,z/y)

which also is the second inequality in (3.7). Since all the other conditions of Lemma 3.1 are also satisfied, the
proof of this lemma follows as for Lemma 3.1 to obtain the desired result.
Remark 3.1: If 2 =0 ininequality (3.9) then we have

f(xyy'a'ﬁ’V)_ f (Xiy'allﬁl’yl)zo

for (ay,f,.7,)<(a,B,7) and this implies that f is monotone increasing in its domain of definition. There-
fore the result of lemma 3.2 also holds for a monotone function f.
Theorem 3.2: Suppose that the function u,v e C** (1,5, R), (u,u,,u, ) <(v,v,,v

(2.2) and (2.7). If in addition the function f appearing in Equation (1.1) satisfies
f (va'a!ﬂJ’)_ f (X’ y,al,ﬂl,;/l)z—ﬂ,z (a_al)-l_/l(ﬂ_ﬂl)—i_ﬂ‘(}/_yl)

y), satisfies conditions (2.1),

whenever
(u,ux,uy)g (e, Br) < (e, By) < (v,vx,vy) on l,.

for some constant A >0, suitably chosen.
Then there exists a nested sequence of interval function {Zn},n e N with each term majorising the unique
solution z of Equation (1.1) satisfying condition (1.2) such that the limit Z of this sequence also contains z,



P. 0. Arawomo

that is,

z(x,y)eZ(xy)= rl]i_r)r;Zm(x, y).

Proof: As it has been shown in the proof of Lemma 3.2, the conditions prescribed in this theorem can equally
be linked with those of Theorem 3.1. Therefore the proof can be established in a manner similar to that of Theo-
rem 3.1.
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