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ON THE BEHAVIOUR OF SOLUTIONS FOR A CLASS OF THIRD

ORDER NEUTRAL DELAY DIFFERENTIAL EQUATIONS

A. T. ADEMOLA1, A. M. MAHMOUD2, P. O. ARAWOMO3

Abstract. In this paper, a new class of third order nonlinear neutral delay differential

equations is discussed. By reducing the third order nonlinear neutral delay differential

equations to systems of first order, the second method of Lyapunov is engaged by con-
structing a complete Lyapunov functional and used to establish criteria that guarantee

uniform asymptotic stability of the trivial solution and uniform ultimate boundedness

of solutions. The obtained results are not only new but also include many outstanding
results in the literature. Finally, the correctness and effectiveness of the obtained results

are justified with examples.

1. Introduction

The problem of asymptotic stability, boundedness, integrability, existence and uniqueness of
periodic solutions for differential equations with or without delay has received considerable
attention of authors over the years, see for example Arino et al. [14], Burton [15, 16], Driver
[18], Lakshmikantham et al. [25], Yoshizawa [47, 48] which contains background knowledge.
Other outstanding results include the papers of Ademola and Arawomo [1]–[6], Ademola et
al. [7]–[9], Ademola and Ogundiran [10], Afuwape and Omeike [13], Chukwu [17], Graef et
al. [19, 20, 21], Graef and Tunç [22], Gui [23], Omeike [27, 28], Remili and Oudjedi [30]–[31],
Remili et al. [32], Sadek [33], Tejumola and Tchegnani [34], Tunç [36]–[45], Yao and Wang
[46], Zhu [49] and the references cited therein.

It is well known that delay differential equations (DDEs) are mostly utilized to model
many of the physical processes emanating from engineering and various branches of science
such as atomic energy, information theory, control theory, chemistry, physics, biology and
ecological system. As we all known that stability, boundedness, existence and uniqueness of
solutions are the most important problems in the study of qualitative behaviour of solutions
of FDEs. In fact, time delays occur most often in many physical and ecology systems,
because the future state of the systems depend on both the present and past states. It is
widely known that time delays often lead to instability of a stable system. Therefore, the
study of FDEs has become the subject of many investigations.
In 1992 Zhu [49], developed sufficient conditions to guarantee the stability, boundedness and
ultimate boundedness of solutions for the following third order nonlinear delay differential
equations

x′′′ + ax′′ + bx′ + f(x(t− τ)) = p(t),

and

x′′′ + ax′′ + φ(x′(t− τ)) + f(x) = p(t).
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In 2003, Sadek [33] considered the stability and boundedness of solutions for the third order
delay differential equation

x′′′ + ax′′ + g(x′(t− τ(t))) + f(x(t− τ(t))) = p(t).

In 2006, Liu and Huang [26] used the coincidence degree theory to discussed the existence
and uniqueness of periodic solutions for a kind of first order neutral functional differential
equations

(x(t) +Bx(t− δ))′ = g1(t, x(t)) + g2(t, x(t− τ)) + p(t),

where p : R→ R and g1, g2 : R×R→ R are continuous functions, τ,B and δ are constants,
p is T−periodic, g1 and g2 are T−periodic in the first argument, |B| 6= 1 and T > 0. In 2007
the author in [45] studied stability and boundedness of solutions of nonlinear third order
delay differential equations

x′′′ + a1x
′′ + f2(x(t− τ(t))) + a3x(t) = p(t, x, x′, x(t− τ(t)), x′(t− τ(t)), x′′)

In 2010, Omeike [27], Tunç [40] and [42] respectively considered new results on the stability
of solution of some non autonomous third order delay differential equations

x′′′ + a(t)x′′ + b(t)x′ + c(t)f(x(t− τ)) = 0,

the stability and boundedness of solutions of nonlinear third order delay differential equations

x′′′ + g(x, x′)x′′ + f(x(t− τ), x′(t− τ)) + h(x(t− τ)) = p(t, x, x′, x(t− τ), x′(t− τ)), x′′)

and some stability and boundedness conditions for non autonomous differential equations
with deviating arguments

x′′′ + a(t)x′′ + b(t)g1(x′(t− τ)) + g2(x′) + h(x(t− τ)) = p(t, x, x′, x(t− τ), x′(t− τ)), x′′).

In 2013, Ademola and Arawomo [6] developed criteria which guarantee uniform asymptotic
stability and boundedness of solutions for the third order nonlinear differential equation

x′′′ + f(x, x′, x′′)x′′ + g(x(t− τ(t)), x′(t− τ(t)) + h(x(t− τ(t))) = p(t, x, x′, x′′),

where f, g, h and p are continuous functions depending only on the arguments displayed.
In another interesting paper, Graef et al. [19] discussed sufficient conditions that guaran-

tee the square integrability of all solutions and the asymptotic stability of the zero solution
of a non-autonomous third order neutral delay differential equation

[x(t) + βx(t− τ)]′′′ + a(t)

(
Q(x(t))x′(t)

)′
+ b(t)

(
R(x(t))x′(t)

)
+ c(t)f(x(t− r)) = h(t),

where β and r are constants with 0 ≤ β ≤ 1 and r ≥ 0, the functions a, b, c : [0,∞)→ [0,∞),
Q,R : R→ [0,∞), h : [0,∞)→ R, and f : R→ R, are continuous, and xf(x) > 0 for x 6= 0.

Recently, in 2019 Oudjedi et al. [29] gave sufficient conditions for every solution to be
converges to zero, bounded and square integrable for a class of third order neutral delay
differential equations

[x(t) + βx(t− τ)]′′′ + a(t)x′′(t) + b(t)x′(t) + c(t)f(x(t− r)) = p(t).

where, β and τ are constants with 0 ≤ β ≤ 1 and τ ≥ 0, h(t) and f(x) continuous functions
depending only on the arguments shown and f ′(x) exist and is continuous for all x.

The aim of this paper is to obtain conditions for uniform asymptotic stability of the zero
solution, uniform ultimate boundedness and the existence of a unique periodic solution for
the nonlinear non autonomous DDE

[x(t) + φx(t− τ)]′′′ + a(t)x′′(t) + b(t)g(x′(t− τ)) + c(t)h(x(t− τ)) = p(t). (1.1)
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Setting x′(t) = y(t) and x′′(t) = z(t), equation (1.1) is equivalent to the system of first order
differential equations

x′(t) = y(t)

y′(t) = z(t)

Z ′(t) = −a(t)z(t)− b(t)g(y(t))− c(t)h(x(t)) + p(t)

+

∫ t

t−τ
[b(t)g′(y(s))z(s) + c(t)h′(x(s))y(s)]ds

(1.2)

where Z(t) = z(t) + φz(t− τ), τ > 0 is a constant delay, φ is a constant satisfying 0 ≤ φ ≤
1, the functions a(t), b(t), c(t), g(y), h(x) are continuous in their respective arguments on
R+,R+,R+,R,R respectively with R+ = [0,∞) and R = (−∞,∞). Besides, it is supposed
that the derivatives g′(y) and h′(x) exist and are continuous for all x, y and h(0) = 0.
Motivation for this paper comes from the works in [6, 19, 26, 27, 29, 33, 40, 42, 45, 49].
Results of this paper are not only new but extend some well known results on third order
delay differential equations in the literature. An equally interesting problem is the second
order delay differential equations of type (1.1). This has already been considered and the
results arising in this direction will be published through another outlet. The main results
are stated and proved in Sections 2 and 3 while in the last section, examples are given to
illustrate and authenticate the obtained results.

2. Uniform Asymptotic Stability of the Trivial Solution

Let X(t) = x(t) + φx(t− τ), Y (t) = y(t) + φy(t− τ) and Z(t) = z(t) + φz(t− τ). When
p(t) ≡ 0, the delay differential equations (1.1) and (1.2) respectively become

[x(t) + φx(t− τ)]′′′ + a(t)x′′(t) + b(t)g(x′(t− τ)) + c(t)h(x(t− τ)) = 0 (2.1)

and

x′(t) = y(t)

y′(t) = z(t)

Z ′(t) = −a(t)z(t)− b(t)g(y(t))− c(t)h(x(t))

+

∫ t

t−τ
[b(t)g′(y(s))z(s) + c(t)h′(x(s))y(s)]ds,

(2.2)

where the functions g and h are defined in Section 1. Let (xt, yt, zt) be any solution of
system (2.2), a continuously differentiable functional V = V (t, xt, yt, zt) employed in this
work is

V =

2∑
i=0

Vi +

∫ t

t−τ

[
µ1y

2(s) + µ2z
2(s)

]
ds+

∫ 0

−τ

∫ t

t+s

[
µ3y

2(τ) + µ4z
2(τ)

]
dτds (2.3)

where

V0 :=
1

2
Z2 + (α+ a)yZ +

1

2
a(t)(α+ a)y2;

V1 := 2c(t)(α+ a)

∫ x

0

h(s)ds+ 2c(t)h(x)Y +
1

2
bb(t)Y 2;

V2 := 2b(t)

∫ y

0

g(s)ds+
1

2
βbx2 + aβxy + βxZ +

1

2
Z2 +

1

2
a(α+ a)y2 + (α+ a)yZ;

and a, b, α, β are positive constants with α, β satisfying the inequalities

min

{
c

2b
− a, 2c

b
− a
}
< α < a, β < b. (2.4)
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Theorem 2.1. Suppose that a0, a1, a, b1, b, c0, c, B, h0, h1, k, α, β, φ, τ are positive con-
stants and that

(i) a0 ≤ a(t) ≤ a1 for all t ≥ 0;
(ii) c0 ≤ c(t) ≤ b(t) ≤ b1, b′(t) ≤ c′(t) ≤ 0 for all t ≥ 0;

(iii) h(0) = 0, h0 ≤
h(x)

x
≤ h1 for all x 6= 0, and h′(x) ≤ |h′(x)| ≤ c for all x;

(iv) b ≤ g(y)

y
≤ B for all y 6= 0, |g′(y)| ≤ k for all y, with c < ab, and a0 = 2a,

τ < min

{
c0h0

b1(k + c)
,

2(α+ a)b− c−A1

A2
,
a− α−A3

A4

}
, (2.5)

where

A1 :=
1

2
b1[(bφ+ 2h1)(1 + φ) + b];

A2 :=
1

2
b1c[β + 2(1 + α+ a+ φ) + (α+ a)(k + c)b1];

A3 :=
1

2
[bb1(1 + φ) + β] + 3φ2(a− α) +

3c20φ
2

2[2(α+ a)b− c]

(
g(y)

y
− b
)2

+
1

2
φ(β + φbb1);

A4 :=b1

[
(1 +

1

2
β + φ)k + (α+ a)c+ (1 + φ)(k + c)

]
.

Then the trivial solution of system (2.2) is uniformly asymptotically stable.

Corollary 2.2. If the nonlinear delay functions g(y′(t− τ)) and h(x(t− τ)) are replaced
by functions g(y′(t)) and h(x(t)) respectively in (2.2), then the trivial solution of the new
system of ordinary differential equations is uniformly asymptotically stable.

Remark 2.1. We note the following:

(i) If φ = 0, a(t) = a, b(t) = b, c(t) = c, where a, b, c are positive constants, g(x′(t−τ)) =
x′(t) and h(x(t−τ)) = x(t) then equation (2.1) reduces to third order linear ordinary
differential equation

x′′′(t) + ax′′(t) + bx′(t) + cx(t) = 0. (2.6)

Furthermore, hypotheses (i) to (v) of Theorem 2.1 reduce to Routh-Hurwitz condi-
tions a > 0, ab > c and c > 0 for asymptotic stability of the trivial solution of the
linear third order differential equation (2.6);

(ii) If φ = 0, equation (1.1) specializes to some of the delay equations discussed in
[17, 27, 33, 40, 46, 49];

(iii) Whenever φ = 0 and τ = 0 then equation (1.1) reduces to third order nonlinear
ordinary differential equations that had been discussed by authors in the literature,
some of these authors include but not limited to [1, 2, 3, 4, 8, 11, 12];

(iv) Observation from relevant literature shows that there are no results on second and
third order delay differential equations of the type (1.1), except in [19, 26, 29],
where existence and uniqueness of periodic solutions for a kind of first order neutral
functional differential equations was discussed;

(v) The results of this paper do not only new but extend some outstanding results in
the literature such as in [6, 26, 27, 29, 33, 40, 42, 45, 49] and the references cited
therein; and

(vi) Note that the solution (xt, yt, zt) can also be written in the form (xt, yt, θzt) where
θ = 1 + φ.
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Next, we shall state and proofs two major lemmas that are prominent to the proof of
Theorem 2.1 and subsequent results

Lemma 2.3. Under the hypotheses of Theorem 2.1 there exist positive constants D0, D1, D2

and D3 such that

D0(x2(t) + y2(t) + z2(t)) ≤ V (t, xt, yt, zt) ≤ D1(x2(t) + y2(t) + z2(t)) +Q(t, y, z), (2.7)

for all t ≥ 0, x, y, z and z(t− τ) where

Q(t, y, z) := D2

∫ t

t−τ
(y2(s) + z2(s))ds+D3

∫ 0

−τ

∫ t

t+s

(y2(τ) + z2(τ))dτds

Proof. Let (xt, yt, zt) be any solution of system (2.2), the functional Vi, (i = 0, 1, 2) can be
rewritten in the following forms

V0 =
1

4
(Z+(α+a)y)2+

1

4
(α+a)a(t)

(
y+

Z

a(t)

)2

+
1

4
(α+a)[a(t)−(α+a)]y2+

1

4a(t)
[a(t)−(α+a)]Z2;

since h(0) = 0, we find that

V1 =
1

2
bb(t)

[
Y +

2c(t)

bb(t)
h(x)

]2
+

2c(t)

b

∫ x

0

[
(α+ a)b− 2c(t)

b(t)
h′(s)

]
h(s)ds;

and

V2 = 2b(t)

∫ y

0

g(s)ds+
1

2
β(b− β)x2 +

1

2
(βx+ ay + Z)2 +

1

2
αa

(
y +

Z

a

)2

+
1

2a
(a− α)Z2.

Since a0 ≤ a(t) ≤ a1 for all t ≥ 0, with the fact that (Z+(α+a)y)2 ≥ 0 and

(
y+ Z

a(t)

)2

≥ 0

for all y, Z with a0 = 2a, we find that

V0 ≥
1

4
(a− α)

[
(α+ a)y2 +

1

a1
Z2

]
(2.8)

for all y and Z. Furthermore, c0 ≤ c(t) ≤ b(t) ≤ b1 for all t ≥ 0, h′(x) ≤ c for all x,
h(x)

x
≥ h0 for all x 6= 0, and [Y + 2c(t)

bb(t)h(x)]2 ≥ 0 for all t ≥ 0, x and Y, it follows that

V1 ≥
2

b

[
(α+ a)b− 2c

]
c0h0x

2, (2.9)

for all x. In addition, since b ≤ g(y)

y
for all y 6= 0, (βx + ay + Z)2 ≥ 0 for all x, y, Z and(

y + Z
a

)2

≥ 0 for all y, Z we have

V2 ≥
1

2
β(b− β)x2 + c0by

2 +
1

2a
(a− α)Z2. (2.10)

Substituting in equation (2.3), estimates (2.8),(2.9) and (2.10), noting that the integrals are
nonnegative and a0 = 2a, there exists a positive constant δ0 > 0 such that

V ≥ δ0(x2 + y2 + Z2) (2.11)

for all t ≥ 0, x, y and Z, where

δ0 := min

{
1

b
[(α+ a)b− 2c]c0h0 +

1

2
β(b− β),

1

4
(α+ a)(a− α) + bc0,

1

4
(a− α)

(
2

a
+

1

a1

)}
.
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Now, from inequality (2.11), we find that, if z(t) = −φz(t− τ),

V (t, xt, yt, zt) = 0 if and only if x2 + y2 + Z2 = 0 (2.12a)

and

V (t, xt, yt, zt) > 0 if and only if x2 + y2 + Z2 6= 0 (2.12b)

V (t, xt, yt, zt)→ +∞ as x2 + y2 + Z2 →∞. (2.12c)

Furthermore, since
h(x)

x
≤ h1 for all x 6= 0,

g(y)

y
≤ B for all y 6= 0, and the fact that

2|q1q2| ≤ q21 + q22 , there exist positive constants δ1, δ2 and δ3 such that

V ≤ δ1(x2 + y2 + z2) + δ2

∫ t

t−τ
[y2(s) + z2(s)]ds+ δ3

∫ 0

−τ

∫ t

t+s

[y2(τ) + z2(τ)]dτds, (2.13)

where

δ1 :=
1

2
max{β(1+b+b)+2b1h1(1+α+a), (α+a)(1+a+a1)+b1(b+2h1)(1+φ)2aβ+2b1B, 1+α+a};

δ2 := max{µ1, µ2};
and

δ3 := max{µ3, µ4}.
Combining estimates (2.11) and (2.13), the inequality (2.7) of Lemma 2.3 is satisfied with
δ0, δ1, δ2, δ3 equivalent to D0, D1, D2, D3 respectively. This completes the proof of Lemma
2.3. �

Lemma 2.4. Under the assumptions of Theorem 2.1 there exists a positive constant D4

such that along the solution path of system (2.2) we have

V ′(2.2)(t, xt, yt, Zt) ≤ −D4(x2(t) + y2(t) + z2(t)) (2.14)

for all t ≥ 0, x, y, z

Proof. Let (xt, yt, zt) be any solution of (2.2). The derivative of the functional V with
respect to independent variable t along the solution of (2.2) is

V ′(2.2) =−
4∑
i=3

Vi +
7∑
i=5

Vi + µ1[y2(t)− y2(t− τ)] + µ2[z2(t)− z2(t− τ)]

+ τ [µ3y
2 + µ4z

2]−
∫ t

t−τ
[µ3y

2(s) + µ4z
2(s)]ds+ aβy2,

(2.15)

where

V3 :=
1

2
βc(t)

h(x)

x
x2 +

[
(α+ a)b(t)

g(y)

y
− c(t)h′(x)

]
y2 + [a(t)− (α+ a)]z2;

V4 :=
5∑
j=1

V4j ;

V41 :=
1

4
βc(t)

h(x)

x
x2 + β

[
b(t)

g(y)

y
− b
]
xy +

1

3

[
(α+ a)b(t)

g(y)

y
− c(t)h′(x)

]
y2;

V42 :=
1

4
βc(t)

h(x)

x
x2 + β[a(t)− a]xz +

1

3
[a(t)− (α+ a)]z2;

V43 :=
1

3

[
(α+ a)b(t)

g(y)

y
− c(t)h′(x)

]
y2 + (α+ a)[a(t)− a]yz +

1

3
[a(t)− (α+ a)]z2;
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V44 :=[a(t)− (α+ a)]

[
1

3
z2 + 2φzz(t− τ)

]
;

V45 :=
1

3

[
(α+ a)b(t)

g(y)

y
− c(t)h′(x)

]
y2 + φb(t)

[
g(y)

y
− b
]
yz(t− τ);

V5 :=(bb(t) + β)yz + 2φc(t)h′(x)yy(t− τ) + βφyz(t− τ + φbb(t)y(t− τ)z

+ φ2bb(t)y(t− τ)z(t− τ);

V6 :=2(α+ a)c′(t)

∫ x

0

h(s)ds+ 2c′(t)h(x)Y +
1

2
bb′(t)Y 2 + 2b′(t)

∫ y

0

g(s)ds

and

V7 := [βx+ 2(α+ a)y + 2z + 2φz(t− τ)]

∫ t

t−τ

[
b(t)g′(y(s))z(s) + c(t)h′(x(s))y(s)

]
ds.

Now since c(t) ≥ c0 for all t ≥ 0,
h(x)

x
≥ h0 for all x 6= 0,

g(y)

y
≥ b for all y 6= 0, h′(x) ≤ c

for all x, a(t) ≥ a0 and c(t) ≤ b(t) for all t ≥ 0, it is not difficult to show that

V3 ≥
1

2
βc0h0x

2 +
1

2
[(2αb− c) + (2ab− c)]y2 + [a− α]z2, (2.16)

for all t ≥ 0, x, y and z. Also, applying the following inequalities

β2

(
b(t)

g(y)

y
− b
)2

<
1

6
βc0h0[2(α+ a)b− c],

β2(a(t)− a)2 <
1

3
βc0h0[a− α],

and

(α+ a)2(a(t)− a)2 <
2

9
[2(α+ a)b− c][a− α],

in V41, V42 and V43 respectively, to obtain the following inequalities

V41 ≥
[

1

2

√
βc0h0|x| −

√
1

6
[2(α+ a)b− c]|y|

]2
≥ 0, ∀ x, y;

V42 ≥
[

1

2

√
βc0h0|x| −

√
1

3
(a− α)|z|

]2
≥ 0, ∀ x, z;

and

V43 ≥
[√

1

6
[2(α+ a)b− c]|y| −

√
1

3
(a− α)|z|

]2
≥ 0, ∀ y, z.

Furthermore, since a1 > α+ a, c0 > 0, 2αb > c and 2ab > c it follows that

[z + 3φz(t− τ)]2 ≥ 0

for all z, z(t− τ), and

[y +
3c0φ

2[2(α+ a)b− c]

(
g(y)

y
− b
)
z(t− τ)]2 ≥ 0

for all y, z(t− τ), so that

V44 ≥ −3φ2(a− α)z2(t− τ)

and

V45 ≥ −
3c20φ

2

2[2(α+ a)b− c]

(
g(y)

y
− b
)2

z2(t− τ).
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Combining V4i, (i = 1, 2, · · · , 5), to get

V4 ≥ −3φ2
[
a− α+

c20
2[2(α+ a)b− c]

(
g(y)

y
− b
)2]

z2(t− τ). (2.17)

Next,

V5 ≤
1

2

[
[b1(b+ 2φh1)]y2 + [bb1(1 + φ) + β]z2 + b1[φb(1 + φ) + 2h1]y2(t− τ)

+ φ[β + φbb1]z(t− τ)

]
.

(2.18)

Moreover, V6 can be rewritten in the form

V6 = b′(t)V61

where

V61 := 2(α+ a)
c′(t)

b′(t)

∫ x

0

h(s)ds+ 2
c′(t)

b′(t)
h(x)Y +

1

2
bY 2 + 2

∫ y

0

g(s)ds.

Since b′(t) ≤ c′(t) ≤ 0 for all t ≥ 0, b > 0, [Y + 2b−1h(x)]2 ≥ 0 for all x and Y, there exists
a positive constant δ∗ such that

V61 ≥ δ∗(x2 + y2) ≥ 0 (2.19)

for all x, y, where

δ∗ := min{b−1[2(α+ a)b− c]h0, b}.

From estimate (2.19) and the assumption that b′(t) ≤ c′(t) ≤ 0 for all t ≥ 0, it follows that

V6 = b′(t)V61 ≤ 0, ∀ t ≥ 0, x, y. (2.20)

Since |g′(y)| ≤ k for all y and |h′(x)| ≤ c for all x, it follows that

V7 ≤
1

2
βb1(k + c)τx2 + (α+ a)b1(k + c)τy2 + b1[(1 + φ(k + c))]τz2

+
1

2
b1c[2(1 + α+ a+ φ) + β]

∫ t

t−τ
y2(s)ds

+ b1[(1 + φ+
1

2
β)k + (α+ a)c]

∫ t

t−τ
z2(s)ds.

(2.21)
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Substituting estimates (2.16), (2.17), (2.18), (2.20) and (2.21) in equation (2.15), to obtain

V ′(2.2) =− 1

2
β

[
c0h0 − b1(k + c)τ

]
x2 −

[
1

2
[2(α+ a)b− c]

−
[

1

2
b1(b+ 2φh1) + aβ + µ1

]
− [µ3 + (α+ a)(k + c)b1]τ

]
y2

−
[
(a− α)− [

1

2
(bb1(1 + φ) + β) + µ2]− [µ4 + b1(1 + φ)(k + c)]τ

]
z2

−
[
µ1 −

1

2
b1[bφ(1 + φ) + 2h1]

]
y2(t− τ)

−
[
µ2 −

[
3φ2(a− α) +

3c20φ
2

2[2(α+ a)b− c]

(
g(y)

y
− b
)2

+
1

2
φ(β + φbb1)

]]
×

z2(t− τ)−
[
µ3 −

1

2
b1c[β + 2(1 + α+ a+ φ)]

] ∫ t

t−τ
y2(s)ds

−
[
µ4 − b1

[
(1 +

1

2
β + φ)k + (α+ a)c

]] ∫ t

t−τ
z2(s)ds.

(2.22)

Choose

µ1 =
1

2
b1[bφ(1+φ)+2h1], µ2 = 3φ2(a−α)+

3c20φ
2

2[2(α+ a)b− c]

(
g(y)

y
− b
)2

+
1

2
φ(β+φbb1),

µ3 =
1

2
b1c[β + 2(1 + α+ a+ φ)], and µ4 = b1

[
(1 +

1

2
β + φ)k + (α+ a)c

]
,

estimate (2.22) becomes

V ′(2.2) =− 1

2
β

[
c0h0 − b1(k + c)τ

]
x2

−
{

1

2
[2(α+ a)b− c]−

[
1

2
b1(b+ 2φh1) + aβ +

1

2
b1[bφ(1 + φ) + 2h1]

]
−
[

1

2
b1c[β + 2(1 + α+ a+ φ)] + (α+ a)(k + c)b1

]
τ

}
y2 −

{
(a− α)

−
[

1

2
(bb1(1 + φ) + β) +

[
3φ2(a− α) +

3c20φ
2

2[2(α+ a)b− c]

(
g(y)

y
− b
)2

+
1

2
φ(β + φbb1)

]]
− b1

[
(1 +

1

2
β + φ)k + (α+ a)c+ (1 + φ)(k + c)

]
τ

}
z2.

(2.23)

Thus in view of estimates (2.23) and (2.5) there exists positive constant δ4 such that

V ′(2.2) ≤ −δ4(x2 + y2 + z2) (2.24)

for all t ≥ 0, x, y, z. Thus, inequality (2.24) establishes inequality (2.14) of Lemma 2.4, this
completes the proof of Lemma 2.4 with δ4 ≡ D4. �

Proof of Theorem 2.1. Let (xt, yt, zt) be any solution of equation (2.2), in view of inequalities
(2.11), (2.13) and (2.24), the trivial solution Xt ≡ 0 of system (2.2) is uniformly stable and
uniformly asymptotically stable. This completes the proof of Theorem 2.1. �
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3. Uniform Ultimate Boundedness of Solutions

In this section, uniform boundedness and uniform ultimate boundedness of solutions of
system (1.2) when p(t) 6= 0, will be discussed.

Theorem 3.1. If assumptions (i) to (vi) of Theorem 2.1 hold and in addition

|p(t)| ≤M, 0 < M <∞, ∀ t ∈ R+,

then the solution (xt, yt, zt) of system (1.2) is uniformly bounded and uniformly ultimately
bounded provided that the inequality (2.5) is satisfied.

Proof. Let (xt, yt, zt) be any solution of system (1.2). The derivative of the functional V
defined by equation (2.3), with respect to the independent variable t along the solution path
of system (1.2) is

V ′(1.2) = V ′(2.2) + [βx+ 2(α+ a)y + 2z + 2φz(t− τ)]p(t). (3.1)

From the inequality (2.24) there exists a positive constant δ5 such that

V ′(1.2) ≤ −δ4(x2 + y2 + z2) + δ5(|x|+ |y|+ |z|)|p(t)|, (3.2)

where
δ5 := max{β, 2(α+ a), 2(1 + φ)}.

Since |p(t)| ≤ M, 0 < M < ∞ for all t ≥ 0 and the fact that |x| < 1 + x2 for all x ∈ R,
choose M > 0 sufficiently small such that δ4 − δ5M > 0, there exist positive constants δ6
and δ7 such that

V ′(1.2) ≤ −δ6(x2 + y2 + z2) + δ7, (3.3)

for all t ≥ 0, x, y and z, where

δ6 := δ4 − δ5M and δ7 := 3δ5M.

From estimates (2.11), (2.13) and (3.3) the solutions (xt, yt, zt) of system (1.2) are uniformly
bounded and uniformly ultimately bounded. This completes the proof of Theorem 3.1. �

Corollary 3.2. If the nonlinear delay functions g(y′(t− τ)) and h(x(t− τ)) are replaced
by functions g(y′(t)) and h(x(t)) respectively in (1.2), and

|p(t)| ≤M, 0 < M <∞, ∀ t ∈ R+,

then the solution (xt, yt, zt) of the new system of ordinary differential equations is uniformly
bounded and uniformly ultimately bounded.

Theorem 3.3. If all hypotheses of Theorem 3.1 hold true and in addition the functions
a(t), b(t), c(t) and p(t) are ω−periodic functions of t, then there exists a unique periodic
solution for system (1.2) of period ω, provided that the inequality (2.5) holds.

Proof. Let (xt, yt, zt) be any solution of system (1.2). From inequality (3.2), since

(|x|+ |y|+ |z|)2 ≤ 3(x2 + y2 + z2)

for all x, y, z, it follows that

V ′(1.2) ≤ −δ8(x2 + y2 + z2) ≤ 0, (3.4)

for all t ≥ 0, x, y, z, where
δ8 := δ4 − 3δ5M > 0

for sufficiently small M > 0. From estimates (2.11), (2.12), (2.13) and (3.4), a unique,
ω−periodic solution of equation (1.2) exists. This completes the proof of Theorem 3.3. �
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4. Example

In this section two examples will be given to illustrate the correctness of the obtained
results of Sections 2 and 3.

Example 4.1. Consider the third order delay differential equation

[x(t) + φx(t− τ)]′′′ +

(
8 +

sin(t/2)

t/2

)
x′′(t) +

(
2x′(t− τ) + 3 sin(x′(t− τ)/3)

)
×(

1

2
+

1

3 + 4t2

)
+

(
1

4
+

1

4 + 4t2

)(
1

7
x(t− τ) +

x(t− τ) sin(x(t− τ)/4)

1 + x2(t− τ)

)
= 0.

(4.1)

As system of first order functioal differential equations, equation (4.1) becomes

x′ = y

y′ = z

Z ′ = −
(

8
sin(t/2)

t/2

)
z −

(
1

2
+

1

3 + 4t2

)
(2y + 3 sin(y/3))−

(
x

7
+
x sin(x/4)

1 + x2

)
×(

1

4
+

1

4 + 4t2

)
+

(
1

2
+

1

3 + 4t2

)∫ t

t−τ

(
2 + 3 cos(y(s)/3)

)
z(s)ds+

(
1

4
+

1

4 + 4t2

)
×∫ t

t−τ

(
1

7
+

sin(x(s)/4)

1 + x2(s)
+
x(s) cos(x(s)/4)

4(1 + x2(s))
− 2x2(s) sin(x(s)/4)

(1 + x2(s))2

)
y(s)ds.

(4.2)

Now, comparing equations (2.2) and (4.2), the following functions are defined:

(i) The function

a(t) := 8 +H1(t)

where

H1(t) =
sin(t/2)

t/2
.

From Figure 1 we notice that −0.22 ≤ H1(t) ≤ 1 for all t ∈ R, it follows that

7.8 = a0 ≤ a(t) ≤ a1 = 9.0 (4.3)

for all t ∈ R. The path of H1(t), a(t) and their bounds are depicted in Figure 1.

FIGURE 1.
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Paths of the functions H1, a and their respective bounds t ∈ [−20π, 20π]

From inequalities (4.3) since a0 = 2a, it follows that

a = 3.9. (4.4)

(ii) The functions

b(t) :=
1

2
+H2(t) and c(t) :=

1

4
+H3(t)

where

H2(t) =
1

3 + 4t2
and H3(t) =

1

4 + 4t2
.

Since 4 + 4t2 > 3 + 4t2 for all t ∈ R, then it follows that

H3(t) < H2(t) (4.5)

for all t ∈ R. Also, since

lim
t→∞

H2(t) = 0 = lim
t→∞

H3(t) (4.6)

FIGURE 2.
The behaviour of the functions H2, H3, b and c, t ∈ [−8, 8]

it follows from estimates (4.5), (4.6), Figure 2 and the fact that the H2 and H3

are decreasing functions, the following inequalities hold

0 ≤ H3(t) < H2(t) ≤ 0.33 (4.7)

for all t ∈ R. From inequalities (4.7), it is easy to see that

0.25 = c0 ≤ c(t) ≤ b(t) ≤ b1 = 0.83

for all t ∈ R, (see Figure 2).
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FIGURE 3.
The behaviour of the functions b′ and c′, t ∈ [0, 6]

Moreover, the derivatives of the functions b and c with respect to the independent
variable t are

b′(t) = − 8t

(3 + 4t2)2
and c′(t) = − 8t

(4 + 4t2)2
.

Noting that

b′(t) = − 8t

(3 + 4t2)2
< − 8t

(4 + 4t2)2
= c′(t) (4.8)

for all t ∈ R. Also,

lim
t→∞

b′(t) = 0 = lim
t→∞

c′(t) (4.9)

Thus, from equations (4.9) and Figure 3, the inequality

b′(t) ≤ c′(t) ≤ 0

follows for all t ∈ R+.
(iii) The function

h(x) :=
1

7
x+

x sin(x/4)

1 + x2
,

clearly h(0) = 0, and that

h(x)

x
=

1

7
+H4(x)

where

H4(x) =
sin(x/4)

1 + x2
.

From Figure 4, since

−0.12 ≤ H4(x) ≤ 0.12

for all x ∈ R, it follows that

0.02 = h0 ≤
h(x)

x
≤ h1 = 0.27, ∀ 0 6= x ∈ R.

Furthermore, the derivative of the function h with respect to x is

h′(x) =
1

7
+H5(x)
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where

H5(x) =
sin(x/4)

1 + x2
+
x cos(x/4)

4(1 + x2)
− 2x2 sin(x/4)

(1 + x2)2
.

Now since H5(x) ≤ 0.16 for all x ∈ R, it follows that

h′(x) ≤ c = 0.3,

for all x ∈ R. The paths of functions H5 and h′ are shown in Figure 5.

FIGURE 4.
The behaviour of the functions H4 and h(x)

x , x ∈ [−20π, 20π]

FIGURE 5.
The behaviour of the functions H5 and h′(x), x ∈ [−20π, 20π]
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FIGURE 6.
The behaviour of |h′(x)|, x ∈ [−6π, 6π]

What is more, from Figure 6 it is easy to see that

|h′(x)| ≤ c = 0.3

for all x ∈ R.

FIGURE 7.
The paths of H6 and g(y)

y , y ∈ [−20π, 20π]

(iv) The function

g(y) := 2y +
y sin(y/3)

y/3
and

g(y)

y
= 2 +H6(y)

where

H6(y) =
sin(y/3)

y/3
.

It can be seen, from Figure 7, that

−0.23 ≤ H6(y) ≤ 1

for all y ∈ R. It is not difficult to see from Figure 7 and the last inequality that

1.77 = b ≤ g(y)

y
≤ B = 3, ∀ 0 6= y ∈ R. (4.10)
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Furthermore, the derivative of the function g with respect to variable y is

g′(y) = 2 +H7(y)

where
H7(y) = cos(y/3).

Noting that −1 ≤ H7(y) ≤ 1 for all y ∈ R, it follows that

|g′(y)| ≤ k = 3.0

for all y ∈ R. For the behaviour of the functions H7 and |g′| see Figure 8. The
aftermath of Theorem 2.1 gives the following summary

Summary 4.2. If the following constants hold a0 = 7.8, a1 = 9.0, a = 3.9, b1 =
0.83, b = 1.77, B = 3.0, c0 = 0.25, h0 = 0.02, h1 = 0.27, L = 0.25, α = 0.3, β =
0.8, φ = 0.5 and for all t ≥ 0
(i) 7.8 ≤ a(t) ≤ 9.0;
(ii) 0.25 ≤ c(t) ≤ b(t) ≤ 0.83, −0.25 ≤ b′(t) ≤ c′(t) ≤ 0;

(iii) h(0) = 0, 0.02 ≤ h(x)
x ≤ 0.27 for all x 6= 0, and h′(x) = |h′(x)| ≤ 0.3 for all x;

(iv) 1.77 ≤ g(y)
y ≤ 3.0 for all y 6= 0, |g′(y)| ≤ 3.0 for all y;

τ < min{0.002, 85.402, 1.165} = 0.002, (4.11)

where A1 = 3.935, A2 = 0.125, A3 = 1.667 and A4 = 1.66. The value 0.001 is
chosen for τ.

Then the trivial solution of (4.2) is uniformly asymptotically stable provided that
inequality (4.11).

FIGURE 8.
The paths of functions H7 and |g′|, y ∈ [−20π, 20π]

Example 4.3. Consider the third order delay differential equation

[x(t) + φx(t− τ)]′′′ +

(
8 +

sin(t/2)

t/2

)
x′′(t) +

(
2x′(t− τ) + 3 sin(x′(t− τ)/3)

)
×(

1

2
+

1

3 + 4t2

)
+

(
1

4
+

1

4 + 4t2

)(
1

7
x(t− τ) +

x(t− τ) sin(x(t− τ)/4)

1 + x2(t− τ)

)
=

1

10
+

1

1 + t
.

(4.12)

As system of first order delay differential equations, equation (4.12) becomes
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x′ = y

y′ = z

Z ′ = −
(

8
sin(t/2)

t/2

)
z −

(
1

2
+

1

3 + 4t2

)
(2y + 3 sin(y/3))−

(
x

7
+
x sin(x/4)

1 + x2

)
×(

1

4
+

1

4 + 4t2

)
+

(
1

2
+

1

3 + 4t2

)∫ t

t−τ

(
2 + 3 cos(y(s)/3)

)
z(s)ds

+

(
1

4
+

1

4 + 4t2

)∫ t

t−τ

(
1

7
+

sin(x(s)/4)

1 + x2(s)
+
x(s) cos(x(s)/4)

4(1 + x2(s))

− 2x2(s) sin(x(s)/4)

(1 + x2(s))2

)
y(s)ds+

1

10
+

1

1 + t
.

(4.13)

Comparing (1.2) and (4.13), items (i) to (iv) of Example 4.1 hold true for functions
a, b, c, g and h. In addition, the function

p(t) :=
1

10
+H8(t)

where

H8(t) =
1

1 + t
.

Analysis shows that the function H8(t) decreases as t increases and that

lim
t→∞

H8(t) = lim
t→∞

(
1

1 + t

)
= 0.

By completeness axiom, function H8 has an upper bound i.e.,

H8(t) ≤ 1

for t = 0. The paths and behaviour of functions H8 and p are shown in Figure 9.

FIGURE 9.
The paths of functions H8 and p, t ∈ [0, 40].

Summary 4.4. If hypotheses (i) to (iv) of Summary 4.2 hold true, and in addition

|p(t)| ≤M = 1
1

10

for all t ≥ 0, then the solutions of (4.13) is uniformly bounded and uniformly ultimately
bounded provided the inequality (4.11) holds.
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372.

[29] L. D. Oudjedi, B. Lekhmissi and M. Remili, Asymptotic properties of solutions to third order neutral
differential equations with delay, Proyecciones Journal of Mathematics, 38(1), (2019), 111 - 127.

[30] M. Remili, and L. D. Oudjedi, On asymptotic stability of solutions to third order nonlinear delay

differential equation, Filomat, 30, 12, (2016), 3217 - 3226.
[31] M. Remili, and L. D. Oudjedi, Stability of the solutions of nonlinear third order differential equations

with multiple deviating arguments, Acta Univ. Sapientiae, Mathematica, 8, 1, (2016), 150 - 165.

[32] M. Remili, L. D. Oudjedi, and D. Beldjerd, On the qualitative behaviors of solutions to a kind of
nonlinear third order differential equation with delay, Communications in Applied Analysis, 20, (2016),

53 - 64.

[33] A. I. Sadek, Stability and boundedness of a kind of third-order delay differential system, Applied Math-
ematics Letters, 16, (2003), 657 - 662.

[34] H. O. Tejumola and B. Tchegnani, Stability, boundedness and existence of periodic solutions of some
third order and fourth-order nonlinear delay differential equations, J. Nigerian Math. Soc., 19, (2000),

9 - 19.
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[38] C. Tunç, On existence of periodic solutions to nonlinear third order differential equations with delay,
J. Comput. Anal. Appl., 12, no. 1, (2010), 191 - 201.
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[40] C. Tunç, On the stability and boundedness of solutions of nonlinear third order differential equations

with delay, Filomat, 24, 3, (2010), 1 - 10.
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